In descending order.
- $2^{\lg^* n}$
- $\lg^* n$
- $\lg (\lg^* n)$
We consider ${\sqrt 2}^{\lg n}$. Let's compare it with $2^{\lg^* n}$. We conjecture
that the first is greater than the second. We have:
$$
\begin{align}
2^{\lg^* n} &\lt {\sqrt 2}^{\lg n} \\
2^{\lg^* n} &\lt {2^{1/2}}^{\lg n} \\
\end{align}
$$
Suppose $n = 2000$. Let $c_1 = \lg n$. We have:
$$
\begin{align}
2^{\lg^* n} &\lt {\sqrt 2}^{\lg n} \\
2^{4} &\lt {2^{1/2}}^{c_1} \\
2^{4} &\lt 2^{{c_1}/2} \\
4 &\lt \frac{1}{2}{c_1} \\
\end{align}
$$
Which is true as $n$ and $c_1$ grow.