Updated 4/11/2018
Here's my experience of installing the NVIDIA CUDA kit 9.0 on a fresh install of Ubuntu Desktop 16.04.4 LTS.
import os | |
import sys | |
import dlib | |
import matplotlib.pyplot as plt | |
from PIL import Image | |
# adjust these variables as necessary | |
# dirname is the directory relative to the script where the files to detect a face and crop live | |
dirname = "source" |
# Keras==1.0.6 | |
import numpy as np | |
from keras.models import Sequential | |
from keras.layers.recurrent import LSTM | |
from keras.layers.core import TimeDistributedDense, Activation | |
from keras.preprocessing.sequence import pad_sequences | |
from keras.layers.embeddings import Embedding | |
from sklearn.cross_validation import train_test_split | |
from sklearn.metrics import confusion_matrix, accuracy_score, precision_recall_fscore_support |
# Keras==1.0.6 | |
from keras.models import Sequential | |
import numpy as np | |
from keras.layers.recurrent import LSTM | |
from keras.layers.core import TimeDistributedDense, Activation | |
from keras.preprocessing.sequence import pad_sequences | |
from keras.layers.embeddings import Embedding | |
from sklearn.cross_validation import train_test_split | |
from keras.layers import Merge | |
from keras.backend import tf |
function import_extract_first { | |
echo "name:ID(Concept)" > concepts.txt | |
cat data-concept-instance-relations.txt | cut -d $'\t' -f 1 | sort | uniq >> concepts.txt | |
echo "name:ID(Instance)" > instances.txt | |
cat data-concept-instance-relations.txt | cut -d $'\t' -f 2 | sort | uniq >> instances.txt | |
echo $':END_ID(Concept)\t:START_ID(Instance) relations:int' > is_a.hdr | |
$NEO4J_HOME/bin/neo4j-import --into concepts.db --id-type string --delimiter TAB --bad-tolerance 13000000 --skip-duplicate-nodes true --skip-bad-relationships true \ |
import tweepy | |
import csv | |
import pandas as pd | |
####input your credentials here | |
consumer_key = '' | |
consumer_secret = '' | |
access_token = '' | |
access_token_secret = '' | |
auth = tweepy.OAuthHandler(consumer_key, consumer_secret) |
<?php | |
namespace App\BotMan\Middleware; | |
use Mpociot\BotMan\Message; | |
use Mpociot\BotMan\Http\Curl; | |
use Mpociot\BotMan\Interfaces\HttpInterface; | |
use Mpociot\BotMan\Interfaces\DriverInterface; | |
use Mpociot\BotMan\Interfaces\MiddlewareInterface; |
Updated 4/11/2018
Here's my experience of installing the NVIDIA CUDA kit 9.0 on a fresh install of Ubuntu Desktop 16.04.4 LTS.
#!/bin/bash | |
### steps #### | |
# Verify the system has a cuda-capable gpu | |
# Download and install the nvidia cuda toolkit and cudnn | |
# Setup environmental variables | |
# Verify the installation | |
### | |
### to verify your gpu is cuda enable check |
import cv2 # opencv | |
import numpy as np | |
font_scale = 1.5 | |
font = cv2.FONT_HERSHEY_PLAIN | |
# set the rectangle background to white | |
rectangle_bgr = (255, 255, 255) | |
# make a black image | |
img = np.zeros((500, 500)) |
{ | |
"src": "/tmp/scratch-desktop/", | |
"dest": "/tmp/", | |
"arch": "i386", | |
"icon": "/tmp/scratch-desktop/resources/Icon.png", | |
"categories": [ | |
"Education" | |
] | |
} |