Table of Contents
* Generic Syntax
* Main Options
* Encoding :
<?php | |
namespace App\BotMan\Middleware; | |
use Mpociot\BotMan\Message; | |
use Mpociot\BotMan\Http\Curl; | |
use Mpociot\BotMan\Interfaces\HttpInterface; | |
use Mpociot\BotMan\Interfaces\DriverInterface; | |
use Mpociot\BotMan\Interfaces\MiddlewareInterface; |
import tweepy | |
import csv | |
import pandas as pd | |
####input your credentials here | |
consumer_key = '' | |
consumer_secret = '' | |
access_token = '' | |
access_token_secret = '' | |
auth = tweepy.OAuthHandler(consumer_key, consumer_secret) |
function import_extract_first { | |
echo "name:ID(Concept)" > concepts.txt | |
cat data-concept-instance-relations.txt | cut -d $'\t' -f 1 | sort | uniq >> concepts.txt | |
echo "name:ID(Instance)" > instances.txt | |
cat data-concept-instance-relations.txt | cut -d $'\t' -f 2 | sort | uniq >> instances.txt | |
echo $':END_ID(Concept)\t:START_ID(Instance) relations:int' > is_a.hdr | |
$NEO4J_HOME/bin/neo4j-import --into concepts.db --id-type string --delimiter TAB --bad-tolerance 13000000 --skip-duplicate-nodes true --skip-bad-relationships true \ |
# Keras==1.0.6 | |
from keras.models import Sequential | |
import numpy as np | |
from keras.layers.recurrent import LSTM | |
from keras.layers.core import TimeDistributedDense, Activation | |
from keras.preprocessing.sequence import pad_sequences | |
from keras.layers.embeddings import Embedding | |
from sklearn.cross_validation import train_test_split | |
from keras.layers import Merge | |
from keras.backend import tf |
# Keras==1.0.6 | |
import numpy as np | |
from keras.models import Sequential | |
from keras.layers.recurrent import LSTM | |
from keras.layers.core import TimeDistributedDense, Activation | |
from keras.preprocessing.sequence import pad_sequences | |
from keras.layers.embeddings import Embedding | |
from sklearn.cross_validation import train_test_split | |
from sklearn.metrics import confusion_matrix, accuracy_score, precision_recall_fscore_support |
import os | |
import sys | |
import dlib | |
import matplotlib.pyplot as plt | |
from PIL import Image | |
# adjust these variables as necessary | |
# dirname is the directory relative to the script where the files to detect a face and crop live | |
dirname = "source" |
"""A simple implementation of a greedy transition-based parser. Released under BSD license.""" | |
from os import path | |
import os | |
import sys | |
from collections import defaultdict | |
import random | |
import time | |
import pickle | |
SHIFT = 0; RIGHT = 1; LEFT = 2; |
In general, check the crt/host_config.h
file to find out which versions are supported.
Sometimes it is possible to hack the requirements there to get some newer versions working, too :)
Thrust version can be found in $CUDA_ROOT/include/thrust/version.h
.
Download Archives: https://developer.nvidia.com/cuda-toolkit-archive
Release notes for CUDA Toolkit (CTK):