-
-
Save mmmikael/0a3d4fae965bdbec1f9d to your computer and use it in GitHub Desktop.
from __future__ import absolute_import | |
from __future__ import print_function | |
import numpy as np | |
np.random.seed(1337) # for reproducibility | |
import random | |
from keras.datasets import mnist | |
from keras.models import Sequential | |
from keras.layers.core import * | |
from keras.optimizers import SGD, RMSprop | |
from keras import backend as K | |
def euclidean_distance(inputs): | |
assert len(inputs) == 2, \ | |
'Euclidean distance needs 2 inputs, %d given' % len(inputs) | |
u, v = inputs | |
return K.sqrt((K.square(u - v)).sum(axis=1, keepdims=True)) | |
def contrastive_loss(y, d): | |
""" Contrastive loss from Hadsell-et-al.'06 | |
http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf | |
""" | |
margin = 1 | |
return K.mean(y * K.square(d) + (1 - y) * K.square(K.maximum(margin - d, 0))) | |
def create_pairs(x, digit_indices): | |
""" Positive and negative pair creation. | |
Alternates between positive and negative pairs. | |
""" | |
pairs = [] | |
labels = [] | |
n = min([len(digit_indices[d]) for d in range(10)]) - 1 | |
for d in range(10): | |
for i in range(n): | |
z1, z2 = digit_indices[d][i], digit_indices[d][i+1] | |
pairs += [[x[z1], x[z2]]] | |
inc = random.randrange(1, 10) | |
dn = (d + inc) % 10 | |
z1, z2 = digit_indices[d][i], digit_indices[dn][i] | |
pairs += [[x[z1], x[z2]]] | |
labels += [1, 0] | |
return np.array(pairs), np.array(labels) | |
def create_base_network(in_dim): | |
""" Base network to be shared (eq. to feature extraction). | |
""" | |
seq = Sequential() | |
seq.add(Dense(128, input_shape=(in_dim,), activation='relu')) | |
seq.add(Dropout(0.1)) | |
seq.add(Dense(128, activation='relu')) | |
seq.add(Dropout(0.1)) | |
seq.add(Dense(128, activation='relu')) | |
return seq | |
def compute_accuracy(predictions, labels): | |
""" Compute classification accuracy with a fixed threshold on distances. | |
""" | |
return labels[predictions.ravel() < 0.5].mean() | |
# the data, shuffled and split between tran and test sets | |
(X_train, y_train), (X_test, y_test) = mnist.load_data() | |
X_train = X_train.reshape(60000, 784) | |
X_test = X_test.reshape(10000, 784) | |
X_train = X_train.astype('float32') | |
X_test = X_test.astype('float32') | |
X_train /= 255 | |
X_test /= 255 | |
in_dim = 784 | |
nb_epoch = 20 | |
# create training+test positive and negative pairs | |
digit_indices = [np.where(y_train == i)[0] for i in range(10)] | |
tr_pairs, tr_y = create_pairs(X_train, digit_indices) | |
digit_indices = [np.where(y_test == i)[0] for i in range(10)] | |
te_pairs, te_y = create_pairs(X_test, digit_indices) | |
# network definition | |
# create a Sequential for each element of the pairs | |
input1 = Sequential() | |
input2 = Sequential() | |
input1.add(Layer(input_shape=(in_dim,))) | |
input2.add(Layer(input_shape=(in_dim,))) | |
# share base network with both inputs | |
# G_w(input1), G_w(input2) in article | |
base_network = create_base_network(in_dim) | |
add_shared_layer(base_network, [input1, input2]) | |
# merge outputs of the base network and compute euclidean distance | |
# D_w(input1, input2) in article | |
lambda_merge = LambdaMerge([input1, input2], euclidean_distance) | |
# create main network | |
model = Sequential() | |
model.add(lambda_merge) | |
# train | |
rms = RMSprop() | |
model.compile(loss=contrastive_loss, optimizer=rms) | |
model.fit([tr_pairs[:, 0], tr_pairs[:, 1]], tr_y, batch_size=128, nb_epoch=nb_epoch, | |
validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y)) | |
# compute final accuracy on training and test sets | |
pred = model.predict([tr_pairs[:, 0], tr_pairs[:, 1]]) | |
tr_acc = compute_accuracy(pred, tr_y) | |
pred = model.predict([te_pairs[:, 0], te_pairs[:, 1]]) | |
te_acc = compute_accuracy(pred, te_y) | |
print('* Accuracy on training set: %0.2f%%' % (100 * tr_acc)) | |
print('* Accuracy on test set: %0.2f%%' % (100 * te_acc)) |
@vbalnt For that you can use the graph based API instead of using model.add() to add layers. Graph based API will let you define pathways from input to the output, and you compile models from different pathways for your application.
Hi,
In your example, create_base_network() creates a sequential network. If the network is not sequential ( for example Resnet) how can I implement this using Model(). The problem is that Model() need a input which can't be given as we need to share the model
hey,
have you observed any considerable improvement in performance using siamese neural network.(other than MNIST as a simple CNN also gives good accuracy )
FYI ... This code needs some fixing since Keras doesn't have add_shared_layer anymore ... see the same example fixed here in Keras repo:
https://github.com/keras-team/keras/blob/master/examples/mnist_siamese.py
Thank you very much, it helps me a lot for codding and understanding...
Hi @mmmikael, any tips on how to extract the individual trained network from the example above for autonomous usage?
E.g something like
base_network.predict(input)
Thanks