Last active
September 12, 2023 22:13
-
-
Save murphyk/94205bcf335837108ff0e6d51331785a to your computer and use it in GitHub Desktop.
illustrate tail sensitivity of Bayes (from McElreath)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
post_prior <- function(m_pr, m_lik, sd_pr, sd_lik, df_pr, df_lik, | |
xlim = c(-5, 15), n = 1001, ttl = "",...) { | |
xvec <- seq(xlim[1], xlim[2], length.out = n) | |
tfun <- function(x,m,s,df, ...) dt((x-m)/s, df) | |
prvec <- tfun(xvec, m_pr, sd_pr, df_pr) | |
likvec <- tfun(xvec, m_lik, sd_lik, df_lik) | |
postvec <- prvec*likvec/(sum(prvec*likvec)*diff(xvec[1:2])) | |
matplot(xvec, cbind(prvec, likvec, postvec), | |
type = "l", | |
lty = c(2,1,1), | |
col = c(1,1,2), | |
lwd = c(1,1,2), | |
ylab = "density", | |
...) | |
title(ttl) | |
pmax = max(max(likvec), max(prvec)) | |
text(0, pmax, "likelihood") | |
text(10, pmax, "prior") | |
} | |
par(las = 1, bty = "l") | |
par(mfrow=c(2,2)) | |
post_prior(10, 0, 1, 1, 1000,1000, ttl="prior:N, lik:N") # log = "y") | |
post_prior(10, 0, 1, 1, 2, 2, ttl="prior:T, lik:T") #, log = "y") | |
post_prior(10, 0, 1, 1, 2, 1000, ttl="prior:T, lik:N") | |
post_prior(10, 0, 1, 1, 1000, 2, ttl="prior:N, lik:T") | |
You are right.
Or we could use a library for probability distributions that takes care of all this for us.
like this:
pr_prior = tfd.StudentT(df_prior, mean_prior, std_prior)
https://colab.research.google.com/github/gerdm/misc/blob/master/2023-09/bayes-tails.ipynb
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Leaving a comment here since I can't find how to edit.
As per https://twitter.com/analisereal/status/1701412100403573008 we should also scale the t-density by (1/s), i.e,
dt((x-m)/s, df)*(1/s)