Command: ssh -J <username>@<login node> <username>@<GPU node>
Login nodes
- 140.112.51.229 (z-gotham.math.ntu.edu.tw)
 - 140.112.51.228 (z-greenwich.math.ntu.edu.tw)
 
GPU nodes
- 140.112.51.222 (brillante.math.ntu.edu.tw)
 - 140.112.51.223 (cantabile.math.ntu.edu.tw)
 
Example: ssh -J [email protected] [email protected]
The default password is the same as your username.
Change the default password with yppasswd
Load necessary modules:
module load anaconda3/5.2.0module load cuda/10.0module load cudnn-7.6/10.0module load tensorflow-gpu/1.14.0
Run you Tensroflow Python code!
Note: It only works on CPU. Load necessary modules:
module load anaconda3/5.2.0module load cupymodule load chainer
- Check which GPU is not in use with 
nvidia-smi(Remember the ID!) - Run 
export CUDA_VISIBLE_DEVICES=<ID>to use the specific GPU 
[General settings]
module load cuda/10.0 cudnn-7.6/10.0
export CUDA_VISIBLE_DEVICES=8
pip install sklearn
[TensorFlow]
pip install tensorflow-gpu
https://gist.github.com/guillaume-chevalier/6b01c4e43a123abf8db69fa97532993f
https://gist.github.com/giuseppebonaccorso/48694ea84a474ad8c748c240ed8d4376
https://medium.com/datadriveninvestor/part-7-review-of-gradients-hessians-and-newtons-method-with-examples-implemented-in-tensorflow-9a1798a4c33b
https://squadrick.github.io/journal/natural-gradients-in-tensorflow.html
pip install 'kfac[tensorflow_gpu]'
pip install sonnet graphs
[Horovod]
https://github.com/horovod/horovod
[PyTorch]
pip install https://download.pytorch.org/whl/cu100/torch-1.1.0-cp36-cp36m-linux_x86_64.whl
pip3 install https://download.pytorch.org/whl/cu100/torchvision-0.3.0-cp36-cp36m-linux_x86_64.whl
[natural-gradient]
Use python 3.6+
git clone https://github.com/wiseodd/natural-gradients
In input_data.py “urllib” > “urllib.request”
mkdir temp