Skip to content

Instantly share code, notes, and snippets.

@nanaHa1003
Last active July 4, 2019 12:39
Show Gist options
  • Save nanaHa1003/0eeb60df19d151c6c8f96bdf8bdf63ca to your computer and use it in GitHub Desktop.
Save nanaHa1003/0eeb60df19d151c6c8f96bdf8bdf63ca to your computer and use it in GitHub Desktop.

MARCH Course Computation Resources

Login

Command: ssh -J <username>@<login node> <username>@<GPU node>

Login nodes

  • 140.112.51.229 (z-gotham.math.ntu.edu.tw)
  • 140.112.51.228 (z-greenwich.math.ntu.edu.tw)

GPU nodes

  • 140.112.51.222 (brillante.math.ntu.edu.tw)
  • 140.112.51.223 (cantabile.math.ntu.edu.tw)

Example: ssh -J [email protected] [email protected]

The default password is the same as your username. Change the default password with yppasswd

Use Tensorflow

Load necessary modules:

  • module load anaconda3/5.2.0
  • module load cuda/10.0
  • module load cudnn-7.6/10.0
  • module load tensorflow-gpu/1.14.0

Run you Tensroflow Python code!

Use Chainer

Note: It only works on CPU. Load necessary modules:

  • module load anaconda3/5.2.0
  • module load cupy
  • module load chainer

Select GPU

  • Check which GPU is not in use with nvidia-smi (Remember the ID!)
  • Run export CUDA_VISIBLE_DEVICES=<ID> to use the specific GPU
@rioyokota
Copy link

rioyokota commented Jul 4, 2019

Use PyTorchKFAC

module load cuda/10.0 cudnn-7.6/10.0 torch
https://github.com/alecwangcq/KFAC-Pytorch.git
pip install networkx
pip install tensorflow-gpu
pip install torch torchvision

@rioyokota
Copy link

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment