Command: ssh -J <username>@<login node> <username>@<GPU node>
Login nodes
- 140.112.51.229 (z-gotham.math.ntu.edu.tw)
- 140.112.51.228 (z-greenwich.math.ntu.edu.tw)
GPU nodes
- 140.112.51.222 (brillante.math.ntu.edu.tw)
- 140.112.51.223 (cantabile.math.ntu.edu.tw)
Example: ssh -J [email protected] [email protected]
The default password is the same as your username.
Change the default password with yppasswd
Load necessary modules:
module load anaconda3/5.2.0module load cuda/10.0module load cudnn-7.6/10.0module load tensorflow-gpu/1.14.0
Run you Tensroflow Python code!
Note: It only works on CPU. Load necessary modules:
module load anaconda3/5.2.0module load cupymodule load chainer
- Check which GPU is not in use with
nvidia-smi(Remember the ID!) - Run
export CUDA_VISIBLE_DEVICES=<ID>to use the specific GPU
Use PyTorchKFAC
module load cuda/10.0 cudnn-7.6/10.0 torch
https://github.com/alecwangcq/KFAC-Pytorch.git
pip install networkx
pip install tensorflow-gpu
pip install torch torchvision