Last active
August 28, 2022 05:09
-
-
Save nanguoyu/bc1e1e1a2c4e01458c2180a28566cfd9 to your computer and use it in GitHub Desktop.
Ubuntu20.04 CUDA
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Nvidia Driver installation | |
# sudo apt install nvidia-driver-460 | |
# sudo reboot | |
# CUDA installation | |
# Version==11.0.3 | |
# If you want to compile OpenCV with CUDA support, | |
# please install CUDA11.0.1 by net (method2) and then install CUDA11.0.3 by runfile again and dont override driver. | |
# Because I find net installtion is different from runfile such as nppi. | |
# Method 1 | |
# wget https://developer.download.nvidia.com/compute/cuda/11.0.3/local_installers/cuda_11.0.3_450.51.06_linux.run | |
# sudo sh cuda_11.0.3_450.51.06_linux.run | |
# Method 2 | |
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin | |
sudo mv cuda-ubuntu2004.pin /etc/apt/preferences.d/cuda-repository-pin-600 | |
sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/7fa2af80.pub | |
sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/ /" | |
sudo apt-get update | |
# Please have a look if Nvidia give you the current version | |
sudo apt-cache madison cuda | |
sudo apt-get -y install cuda=11.0.3-1 | |
nvcc --version | |
# install TensorRT | |
# https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html | |
# Download TensorRT-7.2.2.3.Ubuntu-18.04.x86_64-gnu.cuda-11.0.cudnn8.0.tar.gz | |
# nv-tensorrt-repo-ubuntu1804-cuda11.0-trt7.2.2.3-ga-20201211_1-1_amd64.deb | |
echo "export PATH=$PATH:/usr/src/tensorrt/bin" >> ~/.bashrc | |
source ~/.bashrc | |
# Download cuDNN from Nvidia: https://developer.nvidia.com/rdp/cudnn-download for version 10.1 | |
echo "Please download cuDNN from https://developer.nvidia.com/rdp/cudnn-download" | |
tar -xzvf cudnn-11.2-linux-x64-v8.1.0.77.tgz | |
sudo cp cuda/include/cudnn*.h /usr/local/cuda/include | |
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64 | |
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn* | |
cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2 | |
# Add the following line to ~/.bashrc | |
echo "export PATH=$PATH:/usr/local/cuda-11.0/bin" >> ~/.bashrc | |
echo "export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-11.0/lib64" >> ~/.bashrc | |
source ~/.bashrc | |
# Install Conda | |
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh | |
sudo bash ./Miniconda3-latest-Linux-x86_64.sh | |
echo "export ANACONDA_HOME=/usr/lib/miniconda3/" >> ~/.bashrc | |
source ~/.bashrc | |
sudo cp /usr/bin/python /usr/bin/python_bak | |
sudo rm /usr/bin/python | |
sudo ln -s /usr/lib/miniconda3/bin/python /usr/bin/python | |
# Install Pytorch | |
conda install pytorch torchvision torchaudio cudatoolkit=11.0 -c pytorch | |
# Install Opencv | |
sudo apt update | |
sudo apt install libopencv-dev python3-opencv | |
pip install opencv-python | |
pip install opencv-contrib-python | |
# Install ffmpeg 4.0+ | |
sudo snap install ffmpeg | |
sudo apt-get install -y build-essential python3-dev python3-setuptools make cmake | |
sudo apt-get install -y libavcodec-dev libavfilter-dev libavformat-dev libavutil-dev | |
git clone --recursive https://github.com/dmlc/decord | |
cd decord | |
mkdir build && cd build | |
cmake .. -DUSE_CUDA=ON -DCMAKE_BUILD_TYPE=Release | |
cd build | |
make | |
# Download and complie YOLOV4 from ALexeyAB/darknet | |
git clone https://github.com/AlexeyAB/darknet.git | |
cd darknet | |
make | |
# Download yolov4.weights | |
wget https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.weights | |
# Opensource code for apriltag | |
pip install apriltag | |
# tkDNN | |
sudo apt install libyaml-cpp-dev | |
echo "export PATH=$PATH:/usr/local/lib" >> ~/.bashrc | |
# | |
pip install mmcv-full | |
# Download COCO dataset | |
curl -sSO https://gist.githubusercontent.com/nanguoyu/ee345c198500d9acdfdd09a0bcdbdc0b/raw/3a155ee2be7128a8da531c732d3d9c34747dec13/coco.sh && sh coco.sh | |
# Install torch2trt | |
git clone https://github.com/NVIDIA-AI-IOT/torch2trt | |
cd torch2trt | |
python setup.py install |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Todo: