Created
May 22, 2016 23:21
-
-
Save naoyashiga/cc687aaa52326843f8d5d4cb0d83b001 to your computer and use it in GitHub Desktop.
image reg
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy | |
import matplotlib.pyplot as plt | |
import chainer | |
from chainer import cuda | |
import chainer.functions as F | |
import chainer.links as L | |
from chainer import optimizers | |
from chainer import cuda, Function, gradient_check, Variable, optimizers, serializers, utils | |
from chainer import Link, Chain, ChainList | |
import io | |
from IPython.display import clear_output, Image, display | |
from scipy.misc import imresize | |
import PIL.Image | |
def showImageArray(array, fmt='jpeg'): | |
array = numpy.uint8(numpy.clip(array, 0, 255)) | |
f = io.BytesIO() | |
PIL.Image.fromarray(array).save(f, fmt, quality=100, optimize=True) | |
display(Image(data=f.getvalue())) | |
# pilImg = PIL.Image.fromarray(array) | |
# pilImg.show() | |
# display(Image(data=array)) | |
def to_np(imgpath): | |
return numpy.float32(PIL.Image.open(imgpath)) | |
def getTrainingData(img): | |
print(img.shape) | |
rgbs = [] | |
indices = [] | |
width = img.shape[0] | |
height = img.shape[1] | |
for i in range(width): | |
for j in range(height): | |
_s = float(width) | |
x = (i - _s / 2.0) / _s | |
y = (j - _s / 2.0) / _s | |
rgb = img[i, j] | |
rgbs.append(rgb) | |
indices.append([x, y]) | |
rgbs = numpy.array(rgbs, dtype=numpy.float32) | |
indices = numpy.array(indices, dtype=numpy.float32) | |
x_data = Variable(indices) | |
y_data = Variable(rgbs / 255.0 - 0.5) | |
# y_data = Variable(rgbs) | |
return x_data, y_data | |
size = 50 | |
img = imresize(to_np("./cat.jpeg"), (size, size)) | |
# print(img) | |
showImageArray(img) | |
x_data, y_data = getTrainingData(img) | |
model = chainer.Chain(l1=L.Linear(2, 20, wscale=2), | |
l2 = L.Linear(20, 20, wscale=1), | |
l3=L.Linear(20, 20, wscale=2), | |
l4=L.Linear(20, 20, wscale=1), | |
l5=L.Linear(20, 20, wscale=2), | |
l6=L.Linear(20, 20, wscale=1), | |
l7=L.Linear(20, 20, wscale=1), | |
l8=L.Linear(20, 20, wscale=1), | |
l13=L.Linear(20, 3, wscale=2)) | |
def forward(model, x, t): | |
hidden = F.relu(model.l1(x)) | |
hidden = F.relu(model.l2(hidden)) | |
hidden = F.relu(model.l3(hidden)) | |
hidden = F.relu(model.l4(hidden)) | |
hidden = F.relu(model.l5(hidden)) | |
hidden = F.relu(model.l6(hidden)) | |
hidden = F.relu(model.l7(hidden)) | |
hidden = F.relu(model.l8(hidden)) | |
hidden = model.l13(hidden) | |
return F.mean_squared_error(hidden, t), hidden | |
optimizer = optimizers.SGD(lr=0.01) | |
optimizer.setup(model) | |
for i in range(1000000): | |
optimizer.zero_grads() | |
loss, hidden = forward(model, x_data, y_data) | |
# print(i) | |
loss.backward() | |
optimizer.update() | |
if i % 100 == 0: | |
# print((hidden.data + 0.5) * 255.) | |
img2 = hidden.data.reshape((50,50,3)) | |
# print((img2 + 0.5) * 255.) | |
showImageArray((img2 + 0.5) * 255.) | |
# showImageArray((hidden.data + 0.5) * 255.) | |
clear_output(wait=True) | |
print("done") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment