-
-
Save nfaycel/c9f486473816771ef469c6bb127f8305 to your computer and use it in GitHub Desktop.
A simple implementation of a genetic algorithm
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import java.util.Random; | |
/** | |
* | |
* @author Vijini | |
*/ | |
//Main class | |
public class SimpleDemoGA { | |
Population population = new Population(); | |
Individual fittest; | |
Individual secondFittest; | |
int generationCount = 0; | |
public static void main(String[] args) { | |
Random rn = new Random(); | |
SimpleDemoGA demo = new SimpleDemoGA(); | |
//Initialize population | |
demo.population.initializePopulation(10); | |
//Calculate fitness of each individual | |
demo.population.calculateFitness(); | |
System.out.println("Generation: " + demo.generationCount + " Fittest: " + demo.population.fittest); | |
//While population gets an individual with maximum fitness | |
while (demo.population.fittest < 5) { | |
++demo.generationCount; | |
//Do selection | |
demo.selection(); | |
//Do crossover | |
demo.crossover(); | |
//Do mutation under a random probability | |
if (rn.nextInt()%7 < 5) { | |
demo.mutation(); | |
} | |
//Add fittest offspring to population | |
demo.addFittestOffspring(); | |
//Calculate new fitness value | |
demo.population.calculateFitness(); | |
System.out.println("Generation: " + demo.generationCount + " Fittest: " + demo.population.fittest); | |
} | |
System.out.println("\nSolution found in generation " + demo.generationCount); | |
System.out.println("Fitness: "+demo.population.getFittest().fitness); | |
System.out.print("Genes: "); | |
for (int i = 0; i < 5; i++) { | |
System.out.print(demo.population.getFittest().genes[i]); | |
} | |
System.out.println(""); | |
} | |
//Selection | |
void selection() { | |
//Select the most fittest individual | |
fittest = population.getFittest(); | |
//Select the second most fittest individual | |
secondFittest = population.getSecondFittest(); | |
} | |
//Crossover | |
void crossover() { | |
Random rn = new Random(); | |
//Select a random crossover point | |
int crossOverPoint = rn.nextInt(population.individuals[0].geneLength); | |
//Swap values among parents | |
for (int i = 0; i < crossOverPoint; i++) { | |
int temp = fittest.genes[i]; | |
fittest.genes[i] = secondFittest.genes[i]; | |
secondFittest.genes[i] = temp; | |
} | |
} | |
//Mutation | |
void mutation() { | |
Random rn = new Random(); | |
//Select a random mutation point | |
int mutationPoint = rn.nextInt(population.individuals[0].geneLength); | |
//Flip values at the mutation point | |
if (fittest.genes[mutationPoint] == 0) { | |
fittest.genes[mutationPoint] = 1; | |
} else { | |
fittest.genes[mutationPoint] = 0; | |
} | |
mutationPoint = rn.nextInt(population.individuals[0].geneLength); | |
if (secondFittest.genes[mutationPoint] == 0) { | |
secondFittest.genes[mutationPoint] = 1; | |
} else { | |
secondFittest.genes[mutationPoint] = 0; | |
} | |
} | |
//Get fittest offspring | |
Individual getFittestOffspring() { | |
if (fittest.fitness > secondFittest.fitness) { | |
return fittest; | |
} | |
return secondFittest; | |
} | |
//Replace least fittest individual from most fittest offspring | |
void addFittestOffspring() { | |
//Update fitness values of offspring | |
fittest.calcFitness(); | |
secondFittest.calcFitness(); | |
//Get index of least fit individual | |
int leastFittestIndex = population.getLeastFittestIndex(); | |
//Replace least fittest individual from most fittest offspring | |
population.individuals[leastFittestIndex] = getFittestOffspring(); | |
} | |
} | |
//Individual class | |
class Individual { | |
int fitness = 0; | |
int[] genes = new int[5]; | |
int geneLength = 5; | |
public Individual() { | |
Random rn = new Random(); | |
//Set genes randomly for each individual | |
for (int i = 0; i < genes.length; i++) { | |
genes[i] = Math.abs(rn.nextInt() % 2); | |
} | |
fitness = 0; | |
} | |
//Calculate fitness | |
public void calcFitness() { | |
fitness = 0; | |
for (int i = 0; i < 5; i++) { | |
if (genes[i] == 1) { | |
++fitness; | |
} | |
} | |
} | |
} | |
//Population class | |
class Population { | |
int popSize = 10; | |
Individual[] individuals = new Individual[10]; | |
int fittest = 0; | |
//Initialize population | |
public void initializePopulation(int size) { | |
for (int i = 0; i < individuals.length; i++) { | |
individuals[i] = new Individual(); | |
} | |
} | |
//Get the fittest individual | |
public Individual getFittest() { | |
int maxFit = Integer.MIN_VALUE; | |
int maxFitIndex = 0; | |
for (int i = 0; i < individuals.length; i++) { | |
if (maxFit <= individuals[i].fitness) { | |
maxFit = individuals[i].fitness; | |
maxFitIndex = i; | |
} | |
} | |
fittest = individuals[maxFitIndex].fitness; | |
return individuals[maxFitIndex]; | |
} | |
//Get the second most fittest individual | |
public Individual getSecondFittest() { | |
int maxFit1 = 0; | |
int maxFit2 = 0; | |
for (int i = 0; i < individuals.length; i++) { | |
if (individuals[i].fitness > individuals[maxFit1].fitness) { | |
maxFit2 = maxFit1; | |
maxFit1 = i; | |
} else if (individuals[i].fitness > individuals[maxFit2].fitness) { | |
maxFit2 = i; | |
} | |
} | |
return individuals[maxFit2]; | |
} | |
//Get index of least fittest individual | |
public int getLeastFittestIndex() { | |
int minFitVal = Integer.MAX_VALUE; | |
int minFitIndex = 0; | |
for (int i = 0; i < individuals.length; i++) { | |
if (minFitVal >= individuals[i].fitness) { | |
minFitVal = individuals[i].fitness; | |
minFitIndex = i; | |
} | |
} | |
return minFitIndex; | |
} | |
//Calculate fitness of each individual | |
public void calculateFitness() { | |
for (int i = 0; i < individuals.length; i++) { | |
individuals[i].calcFitness(); | |
} | |
getFittest(); | |
} | |
} | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment