Last active
January 31, 2025 02:07
-
-
Save nico-martin/64f2ae35ed9a0f890ef50c8d119a6222 to your computer and use it in GitHub Desktop.
An in-memory vectorDB for cosine similarity search in TypeScript that runs directly in the browser and uses TransformersJS for the embeddings.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// requires the experimental v3 of transformersJS: | |
// npm install xenova/transformers.js#v3 | |
import { FeatureExtractionPipeline, pipeline } from "@xenova/transformers"; | |
export interface Entry<T> { | |
str: string; | |
metadata: T; | |
} | |
export interface VectorizedEntry<T> extends Entry<T> { | |
vector: Array<number>; | |
vectorMagnitude: number; | |
} | |
class VectorDB<T = {}> { | |
public entries: Array<VectorizedEntry<T>> = []; | |
private extractor: FeatureExtractionPipeline = null; | |
public constructor() { | |
this.loadExtractor(); | |
} | |
private loadExtractor = async () => { | |
this.extractor = await pipeline( | |
"feature-extraction", | |
"Xenova/all-MiniLM-L6-v2", | |
{ | |
device: "webgpu", | |
dtype: "fp32", | |
}, | |
); | |
}; | |
public async addEntries(entries: Array<Entry<T>>): Promise<void> { | |
const embeddings = await this.embedTexts(entries.map((entry) => entry.str)); | |
entries.map((entry, i) => { | |
this.entries.push({ | |
str: entry.str, | |
metadata: entry.metadata, | |
vector: embeddings[i], | |
vectorMagnitude: this.calculateMagnitude(embeddings[i]), | |
}); | |
}); | |
} | |
public async search( | |
query: string, | |
numberOfResults: number = 5, | |
): Promise<Array<VectorizedEntry<T>>> { | |
const [queryEmbedding] = await this.embedTexts([query]); | |
const queryMagnitude = this.calculateMagnitude(queryEmbedding); | |
const scores = this.calculateSimilarityScores( | |
this.entries, | |
queryEmbedding, | |
queryMagnitude, | |
); | |
const sorted = scores.sort((a, b) => b[1] - a[1]); | |
const results = sorted.slice(0, numberOfResults); | |
return results.map((result) => result[0]); | |
} | |
public clear(): void { | |
this.entries = []; | |
} | |
private async embedTexts( | |
texts: Array<string>, | |
): Promise<Array<Array<number>>> { | |
try { | |
const output = await this.extractor(texts, { | |
pooling: "mean", | |
normalize: true, | |
}); | |
return output.tolist(); | |
} catch (error) { | |
throw error; | |
} | |
} | |
private calculateMagnitude(embedding: number[]): number { | |
let sumOfSquares = 0; | |
for (const val of embedding) { | |
sumOfSquares += val * val; | |
} | |
return Math.sqrt(sumOfSquares); | |
} | |
private calculateSimilarityScores<T>( | |
entries: Array<VectorizedEntry<T>>, | |
queryVector: number[], | |
queryMagnitude: number, | |
): Array<[VectorizedEntry<T>, number]> { | |
return entries.map((entry) => { | |
let dotProduct = 0; | |
if (!entry.vector) { | |
return null; | |
} | |
for (let i = 0; i < entry.vector.length; i++) { | |
dotProduct += entry.vector[i] * queryVector[i]; | |
} | |
let score = this.getCosineSimilarityScore( | |
dotProduct, | |
entry.vectorMagnitude!, | |
queryMagnitude, | |
); | |
score = this.normalizeScore(score); // Normalize the score | |
return [entry, score]; | |
}); | |
} | |
private getCosineSimilarityScore( | |
dotProduct: number, | |
magnitudeA: number, | |
magnitudeB: number, | |
): number { | |
return dotProduct / (magnitudeA * magnitudeB); | |
} | |
private normalizeScore(score: number): number { | |
return (score + 1) / 2; | |
} | |
} | |
export default VectorDB; |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment