-
-
Save ninely/88485b2e265d852d3feb8bd115065b1a to your computer and use it in GitHub Desktop.
"""This is an example of how to use async langchain with fastapi and return a streaming response. | |
The latest version of Langchain has improved its compatibility with asynchronous FastAPI, | |
making it easier to implement streaming functionality in your applications. | |
""" | |
import asyncio | |
import os | |
from typing import AsyncIterable, Awaitable | |
import uvicorn | |
from dotenv import load_dotenv | |
from fastapi import FastAPI | |
from fastapi.responses import StreamingResponse | |
from langchain.callbacks import AsyncIteratorCallbackHandler | |
from langchain.chat_models import ChatOpenAI | |
from langchain.schema import HumanMessage | |
from pydantic import BaseModel | |
# Two ways to load env variables | |
# 1.load env variables from .env file | |
load_dotenv() | |
# 2.manually set env variables | |
if "OPENAI_API_KEY" not in os.environ: | |
os.environ["OPENAI_API_KEY"] = "" | |
app = FastAPI() | |
async def send_message(message: str) -> AsyncIterable[str]: | |
callback = AsyncIteratorCallbackHandler() | |
model = ChatOpenAI( | |
streaming=True, | |
verbose=True, | |
callbacks=[callback], | |
) | |
async def wrap_done(fn: Awaitable, event: asyncio.Event): | |
"""Wrap an awaitable with a event to signal when it's done or an exception is raised.""" | |
try: | |
await fn | |
except Exception as e: | |
# TODO: handle exception | |
print(f"Caught exception: {e}") | |
finally: | |
# Signal the aiter to stop. | |
event.set() | |
# Begin a task that runs in the background. | |
task = asyncio.create_task(wrap_done( | |
model.agenerate(messages=[[HumanMessage(content=message)]]), | |
callback.done), | |
) | |
async for token in callback.aiter(): | |
# Use server-sent-events to stream the response | |
yield f"data: {token}\n\n" | |
await task | |
class StreamRequest(BaseModel): | |
"""Request body for streaming.""" | |
message: str | |
@app.post("/stream") | |
def stream(body: StreamRequest): | |
return StreamingResponse(send_message(body.message), media_type="text/event-stream") | |
if __name__ == "__main__": | |
uvicorn.run(host="0.0.0.0", port=8000, app=app) |
"""This is an example of how to use async langchain with fastapi and return a streaming response.""" | |
import os | |
from typing import Any, Optional, Awaitable, Callable, Union | |
import uvicorn | |
from dotenv import load_dotenv | |
from fastapi import FastAPI | |
from fastapi.responses import StreamingResponse | |
from langchain.callbacks.base import AsyncCallbackHandler | |
from langchain.callbacks.manager import AsyncCallbackManager | |
from langchain.chat_models import ChatOpenAI | |
from langchain.schema import HumanMessage | |
from pydantic import BaseModel | |
from starlette.types import Send | |
# two ways to load env variables | |
# 1.load env variables from .env file | |
load_dotenv() | |
# 2.manually set env variables | |
if "OPENAI_API_KEY" not in os.environ: | |
os.environ["OPENAI_API_KEY"] = "" | |
app = FastAPI() | |
Sender = Callable[[Union[str, bytes]], Awaitable[None]] | |
class AsyncStreamCallbackHandler(AsyncCallbackHandler): | |
"""Callback handler for streaming, inheritance from AsyncCallbackHandler.""" | |
def __init__(self, send: Sender): | |
super().__init__() | |
self.send = send | |
async def on_llm_new_token(self, token: str, **kwargs: Any) -> None: | |
"""Rewrite on_llm_new_token to send token to client.""" | |
await self.send(f"data: {token}\n\n") | |
class ChatOpenAIStreamingResponse(StreamingResponse): | |
"""Streaming response for openai chat model, inheritance from StreamingResponse.""" | |
def __init__( | |
self, | |
generate: Callable[[Sender], Awaitable[None]], | |
status_code: int = 200, | |
media_type: Optional[str] = None, | |
) -> None: | |
super().__init__(content=iter(()), status_code=status_code, media_type=media_type) | |
self.generate = generate | |
async def stream_response(self, send: Send) -> None: | |
"""Rewrite stream_response to send response to client.""" | |
await send( | |
{ | |
"type": "http.response.start", | |
"status": self.status_code, | |
"headers": self.raw_headers, | |
} | |
) | |
async def send_chunk(chunk: Union[str, bytes]): | |
if not isinstance(chunk, bytes): | |
chunk = chunk.encode(self.charset) | |
await send({"type": "http.response.body", "body": chunk, "more_body": True}) | |
# send body to client | |
await self.generate(send_chunk) | |
# send empty body to client to close connection | |
await send({"type": "http.response.body", "body": b"", "more_body": False}) | |
def send_message(message: str) -> Callable[[Sender], Awaitable[None]]: | |
async def generate(send: Sender): | |
model = ChatOpenAI( | |
streaming=True, | |
verbose=True, | |
callback_manager=AsyncCallbackManager([AsyncStreamCallbackHandler(send)]), | |
) | |
await model.agenerate(messages=[[HumanMessage(content=message)]]) | |
return generate | |
class StreamRequest(BaseModel): | |
"""Request body for streaming.""" | |
message: str | |
@app.post("/stream") | |
def stream(body: StreamRequest): | |
return ChatOpenAIStreamingResponse(send_message(body.message), media_type="text/event-stream") | |
if __name__ == "__main__": | |
uvicorn.run(host="0.0.0.0", port=8000, app=app) |
aiohttp==3.8.4 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
aiosignal==1.3.1 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
anyio==3.7.0 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
async-timeout==4.0.2 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
attrs==23.1.0 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
certifi==2023.5.7 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
charset-normalizer==3.1.0 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
click==8.1.3 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
colorama==0.4.6 ; python_full_version >= "3.8.1" and python_version < "3.12" and platform_system == "Windows" | |
dataclasses-json==0.5.7 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
exceptiongroup==1.1.1 ; python_full_version >= "3.8.1" and python_version < "3.11" | |
fastapi==0.95.2 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
frozenlist==1.3.3 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
greenlet==2.0.2 ; python_full_version >= "3.8.1" and python_version < "3.12" and (platform_machine == "win32" or platform_machine == "WIN32" or platform_machine == "AMD64" or platform_machine == "amd64" or platform_machine == "x86_64" or platform_machine == "ppc64le" or platform_machine == "aarch64") | |
h11==0.14.0 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
idna==3.4 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
langchain==0.0.181 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
marshmallow-enum==1.5.1 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
marshmallow==3.19.0 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
multidict==6.0.4 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
mypy-extensions==1.0.0 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
numexpr==2.8.4 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
numpy==1.24.3 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
openai==0.27.7 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
openapi-schema-pydantic==1.2.4 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
packaging==23.1 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
pydantic==1.10.8 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
python-dotenv==1.0.0 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
pyyaml==6.0 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
requests==2.31.0 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
sniffio==1.3.0 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
sqlalchemy==2.0.15 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
starlette==0.27.0 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
tenacity==8.2.2 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
tqdm==4.65.0 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
typing-extensions==4.6.2 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
typing-inspect==0.9.0 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
urllib3==2.0.2 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
uvicorn==0.22.0 ; python_full_version >= "3.8.1" and python_version < "3.12" | |
yarl==1.9.2 ; python_full_version >= "3.8.1" and python_version < "3.12" |
#!/usr/bin/env sh | |
# This script is used to test. | |
curl "http://127.0.0.1:8000/stream" -X POST -d '{"message": "hello!"}' -H 'Content-Type: application/json' |
Here's an example of a Flask-SocketIO server that sends a stream of messages to the client. @faridelya Maybe u can give it a try.
async def async_generator():
# 1. Use the iterator callback
callback = AsyncIteratorCallbackHandler()
# 2. Begin a task that runs in the background.
task = asyncio.create_task(
llm_chain.arun(...),
)
# 3. Read data
async for token in callback.aiter():
yield f"data: {token}\n\n"
await task
@socketio.on('start')
def handle_start():
def run_loop(target_loop):
asyncio.set_event_loop(target_loop)
target_loop.run_until_complete(async_emit())
async def async_emit():
async for data in async_generator():
socketio.emit('response', {'data': data})
loop = asyncio.new_event_loop()
t = threading.Thread(target=run_loop, args=(loop,))
t.start()
Thanks @everyone i got this how to use but it returning final output not streaming.
Usage
- Step1: store @Nathan-Intergral code in .py module or place in same .py file
- Step2:
from langchain.callbacks.manager import CallbackManager
callback_manager = CallbackManager([AsyncIteratorCallbackHandler()])
# You can set in any model callback_manager parameter
llm = LlamaCpp(
model_path=model_path,
max_tokens=2024,
n_gpu_layers=n_gpu_layers,
n_batch=n_batch,
callback_manager=callback_manager,
verbose=False,
)
response = llm_chain.run(question)
print(response) # or return it its upto you
i just write this because i was facing problem in usage so may some find it useful
Thanks
Here's an example of a Flask-SocketIO server that sends a stream of messages to the client. @faridelya Maybe u can give it a try.
async def async_generator(): # 1. Use the iterator callback callback = AsyncIteratorCallbackHandler() # 2. Begin a task that runs in the background. task = asyncio.create_task( llm_chain.arun(...), ) # 3. Read data async for token in callback.aiter(): yield f"data: {token}\n\n" await task @socketio.on('start') def handle_start(): def run_loop(target_loop): asyncio.set_event_loop(target_loop) target_loop.run_until_complete(async_emit()) async def async_emit(): async for data in async_generator(): socketio.emit('response', {'data': data}) loop = asyncio.new_event_loop() t = threading.Thread(target=run_loop, args=(loop,)) t.start()
Sorry @ninely i did not figure out how to use this i known you may have busy schedule but if possible check this example where it show streaming. but this streaming is print out.
i want streaming like ChatGPT api can handle like using fo loop for response variable and we then return or emit each chunk in real time.
Anyway Thanks for your kind response
@faridelya I have just created a PR to enable LlamaCpp to support async stream response. If it gets approved, the following example can be used to implement real-time stream response, not just stdout.
import asyncio
import os
from typing import AsyncIterable, Awaitable, Callable, Union, Any
import uvicorn
from dotenv import load_dotenv
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from langchain.callbacks import AsyncIteratorCallbackHandler
from langchain.callbacks.base import AsyncCallbackHandler
from pydantic import BaseModel
from langchain.llms import LlamaCpp
from langchain import PromptTemplate, LLMChain
from langchain.callbacks.manager import CallbackManager
# Load env variables from .env file
load_dotenv()
app = FastAPI()
template = """Question: {question}
Answer: Let's work this out in a step by step way to be sure we have the right answer."""
prompt = PromptTemplate(template=template, input_variables=["question"])
Sender = Callable[[Union[str, bytes]], Awaitable[None]]
class AsyncStreamCallbackHandler(AsyncCallbackHandler):
"""Callback handler for streaming, inheritance from AsyncCallbackHandler."""
def __init__(self, send: Sender):
super().__init__()
self.send = send
async def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Rewrite on_llm_new_token to send token to client."""
await self.send(f"data: {token}\n\n")
async def send_message(message: str) -> AsyncIterable[str]:
# Callbacks support token-wise streaming
callback = AsyncIteratorCallbackHandler()
callback_manager = CallbackManager([callback])
# Verbose is required to pass to the callback manager
# Make sure the model path is correct for your system!
llm = LlamaCpp(
model_path=os.environ["MODEL_PATH"], # replace with your model path
callback_manager=callback_manager,
verbose=True,
streaming=True,
)
llm_chain = LLMChain(prompt=prompt, llm=llm)
question = "What NFL team won the Super Bowl in the year Justin Bieber was born?"
async def wrap_done(fn: Awaitable, event: asyncio.Event):
"""Wrap an awaitable with an event to signal when it's done or an exception is raised."""
try:
await fn
except Exception as e:
# TODO: handle exception
print(f"Caught exception: {e}")
finally:
# Signal the aiter to stop.
event.set()
# Begin a task that runs in the background.
task = asyncio.create_task(wrap_done(
llm_chain.arun(question),
callback.done),
)
async for token in callback.aiter():
# Use server-sent-events to stream the response
yield f"data: {token}\n\n"
await task
class StreamRequest(BaseModel):
"""Request body for streaming."""
message: str
@app.post("/stream")
def stream(body: StreamRequest):
return StreamingResponse(send_message(body.message), media_type="text/event-stream")
if __name__ == "__main__":
uvicorn.run(host="0.0.0.0", port=8000, app=app)
test
curlhttp://127.0.0.1:8000/stream
-X POST -d '{"message": ""}' -H 'Content-Type: application/json'
how to fix the error
RuntimeWarning: coroutine 'AsyncCallbackManagerForLLMRun.on_llm_new_token' was never awaited
run_manager.on_llm_new_token(
can anyone help? thx
@Ludobico same issue for me also, any update?? @ninely @faridelya Can you please help??
RuntimeWarning: coroutine 'AsyncCallbackHandler.on_chain_end' was never awaited
getattr(handler, event_name)(*args, **kwargs)
RuntimeWarning: Enable tracemalloc to get the object allocation traceback
Caught exception: object dict can't be used in 'await' expression
My Code:
async def send_message(question):
callback = AsyncFinalIteratorCallbackHandler()
memory_key = "chat_history"
prompt = OpenAIFunctionsAgent.create_prompt(
system_message=system_message,
extra_prompt_messages=[MessagesPlaceholder(variable_name=memory_key)]
)
retriever = db.as_retriever(
search_type="mmr",
search_kwargs={'k': 4, 'lambda_mult': 0.25},
return_source_documents=True
)
tool = create_retriever_tool(
retriever,
"VectorDB_Query_Store",
"Searches and returns documents database."
)
tools = [tool]
llm = ChatOpenAI(model="gpt-4-0613",temperature = 0,openai_api_key= openai_api_key_gpt4, streaming = True,callbacks=[callback])
memory = AgentTokenBufferMemory(memory_key=memory_key, llm=llm)
agent = OpenAIFunctionsAgent(llm=llm, tools=tools, prompt=prompt)
agent_executor = AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
memory=memory,
verbose=True,
return_intermediate_steps=True,
callbacks=[callback]
)
async def wrap_done(fn: Awaitable, event: asyncio.Event):
"""Wrap an awaitable with a event to signal when it's done or an exception is raised."""
try:
await fn
except Exception as e:
# TODO: handle exception
print(f"Caught exception: {e}")
finally:
# Signal the aiter to stop.
event.set()
# task = asyncio.create_task(wrap_done(qa_chain.arun({"question": message}),callback.done))
task = asyncio.create_task(agent_executor(agent_executor({"input":question},callback.done))
async for token in callback.aiter():
# Use server-sent-events to stream the response
yield token
await task
@app.post("/stream")
def stream(body: StreamRequest):
return StreamingResponse(send_message(body.message), media_type="text/event-stream")
@Ludobico @iiitmahesh AsyncCallbackHandler
needs to run in asynchronous methods, such as arun
, acall
.
@ninely Do you have any example with agent or AgentExecutor with streaming api ?? Any help would be appreciated.Thanks
@iiitmahesh just like this.
asyncio.create_task(agent_executor.arun(your_params),callback.done)
I did the implementation as you have mentioned. It worked perfectly with one issue.
If the initialize_agent() method called in the setup and reuse the agent to send the messages, streaming only works in the initial stage. It doesn't work after. What would be the problem here?
self.callback_handler is a class variable and will be used in the advanced_chat(). Since AsyncFinalIteratorCallbackHandler() called once in the application, streaming only works once.
If I move the advanced_chat() code to initialize(), streaming works. But I can't do it because there are many tools initialized in the initialize() method. I don't want them to reinitialize during every message process.
-- Sample code ----
`def initialize(self):
self.callback_handler = AsyncFinalIteratorCallbackHandler()
llm = ChatOpenAI(streaming=True, temperature=0, callbacks=[self.callback_handler],
model_name="gpt-4")
memory = AgentMemory().get("ConversationSummaryBufferMemory", llm)
agent = initialize_agent( .... )
async def advanced_chat(self, agent, text) -> AsyncGenerator[str, None]:
run = asyncio.create_task(self.wrap_done(
agent.arun(input=text),
self.callback_handler.done))
async for token in self.callback_handler.aiter():
yield token
await run`
@acliyanarachchi Before reusing, you need to execute callback.done.clear()
. By the way, If used by two LLM runs in parallel this won't work as expected.
What method should be used for an LLM or a ChatLLM, not a chain or agent?
@acliyanarachchi Before reusing, you need to execute
callback.done.clear()
. By the way, If used by two LLM runs in parallel this won't work as expected.
Thanks @ninely. This works perfectly except the error @iiitmahesh mentioned above - RuntimeWarning: coroutine 'AsyncCallbackHandler.on_chain_end'
It doesn't break the flow. But it delay the flow.
Btw, Do you have any examples of how to get VertexAI integrated into initialize_agent() with streaming?
@acliyanarachchi Sorry, I don't know much about this and haven't researched it yet.
I am new to fast API, can someone please help. the code was working fine when I was using flask and deploying it. we are trying to move to production we want to use fast API now. generate_answer_from_LLM functions fails at llm.predict(usrPrompt) Exception in getTChatResponse: Resource not found, So added streaming and callback_manager but getting the below error now
from fastapi import FastAPI, HTTPException, Request
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
import time
import os
import langchain
from langchain.cache import InMemoryCache
from langchain.callbacks import get_openai_callback
from flask_cors import CORS, cross_origin
from langchain.llms import AzureOpenAI
import json
from langchain.cache import SQLiteCache
from typing import List
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from langchain.callbacks import AsyncIteratorCallbackHandler
from langchain.chat_models import ChatOpenAI
from langchain.schema import HumanMessage
ENV_VARS = {
"OPENAI_API_TYPE": "azure",
"OPENAI_API_VERSION": "2022-12-01",
"OPENAI_API_BASE": "openai.azure.com/",
"OPENAI_API_KEY": "*"
}
os.environ.update(ENV_VARS)
app = FastAPI()
class Message(BaseModel):
content: str
class InputJson(BaseModel):
messages: List[Message]
temperature: int
Document_query: bool
from langchain.callbacks.manager import CallbackManager
callback_manager = CallbackManager([AsyncIteratorCallbackHandler()])
llm = AzureOpenAI(
deployment_name="text-davinci-003",
temperature=0,
streaming=True,
callback_manager=callback_manager,
max_tokens=1000)
langchain.llm_cache = SQLiteCache(database_path="./langchain.db")
def generate_answer_from_LLM(usrPrompt):
print("entered dragon")
print(usrPrompt)
with get_openai_callback() as cb:
start_time = time.time()
response = llm.predict(usrPrompt)
end_time = time.time()
print(f"Time taken: {end_time-start_time:0.2f} sec")
return response
@app.post("/getTChatResponse")
async def getTChatResponse(data: InputJson):
try:
user_prompt =data.messages[0].content
print("user_prompt--->", user_prompt)
response =generate_answer_from_LLM(user_prompt)
print(response)
return response
except Exception as e:
print("Exception in getTChatResponse:", e)
return {"error": str(e)}, 500
@app.get("/")
async def read_root():
return {"message": f"Welcome " }
if name == 'main':
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=3010 ,reload=True)
Error I am getting:
C:\Users\Anaconda3\envs\tech_day_1\lib\site-packages\langchain\callbacks\manager.py:115: RuntimeWarning: coroutine 'AsyncIteratorCallbackHandler.on_llm_start' was never awaited
getattr(handler, event_name)(*args, **kwargs)
RuntimeWarning: Enable tracemalloc to get the object allocation traceback
C:\Users\Anaconda3\envs\tech_day_1\lib\site-packages\langchain\callbacks\manager.py:115: RuntimeWarning: coroutine 'AsyncIteratorCallbackHandler.on_llm_error' was never awaited
getattr(handler, event_name)(*args, **kwargs)
RuntimeWarning: Enable tracemalloc to get the object allocation traceback
Async methods like agenerate are intended for generating multiple responses simultaneously independently of each other, right? Can we do streaming without those?
@gingergenius You can use StreamingStdOutCallbackHandler
without using async.
@ninely I just wanted to say THANK YOU! You brought an end to lots of hours of frustration with your async def wrap_done(fn: Awaitable, event: asyncio.Event)
solution, after trying this from @Coding-Crashkurse. and this from @jamescalam
Would you mind explaining why Awaitable
and asyncio.Event
are necessary?
@RoderickVM The purpose of wrap_done
is to interrupt the main process that is blocked on aiter
when an exception occurs during the execution of fn. For specifics, you can look at the implementation of aiter
in AsyncIteratorCallbackHandler
.
@ninely Can you please help me? I'm using Sequential Chain to join multiple prompt. Everything works as expected. But when streaming, it only stream first chain output.
Here is my code:
`import asyncio
from langchain.chat_models import ChatOpenAI
from dotenv import load_dotenv
import os
from langchain.chains import LLMChain, SequentialChain
from langchain.prompts import PromptTemplate
from langchain.callbacks.streaming_aiter import AsyncIteratorCallbackHandler
load_dotenv()
openai_api_key = os.environ.get('OPENAI_API_KEY')
llm = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo-16k",
openai_api_key=openai_api_key, streaming=True, callbacks=[])
capital_template = """
Where is the capital of {country}?
"""
capital_prompt_template = PromptTemplate(
input_variables=["country"], template=capital_template)
capital_chain = LLMChain(
llm=llm, prompt=capital_prompt_template, output_key="capital")
about_template = """Tell me about {capital} in 5 words
"""
about_prompt_template = PromptTemplate(
input_variables=["capital"], template=about_template)
about_chain = LLMChain(
llm=llm, prompt=about_prompt_template, output_key="about")
test_chain = SequentialChain(
chains=[capital_chain, about_chain],
input_variables=["country"],
output_variables=["capital", "about"],
verbose=True)
class TestAgent:
def init(self, country):
self.country = country
async def run(self, stream_it):
res = await test_chain.acall({"country": self.country}, callbacks=[stream_it])
print(res)
async def create_gen(self, stream_it: AsyncIteratorCallbackHandler):
task = asyncio.create_task(
self.run(stream_it))
async for token in stream_it.aiter():
print(token)
yield token
await task
`
Here is FastApi code:
`
@router.get("/test")
async def test():
stream_it = AsyncIteratorCallbackHandler()
agent = TestAgent("England")
gen = agent.create_gen(stream_it)
return StreamingResponse(gen, media_type="text/event-stream")
`
How can i stream full output? Its only stream : The capital of England is London.
crazy how hard it is, really
This has helped me a lot. Thank you!
Trying to implement streaming using AsyncIteratorCallbackHandler() shown above into my LLMChain where doing summarization. Split the document into several chunk and run using:
task = asyncio.create_task(wrap_done([await chain.acall(doc.page_content, callback) for doc in docs], callback.done),)
It just not working. Any suggestion for this?
Trying to implement streaming using AsyncIteratorCallbackHandler() shown above into my LLMChain where doing summarization. Split the document into several chunk and run using: task = asyncio.create_task(wrap_done([await chain.acall(doc.page_content, callback) for doc in docs], callback.done),) It just not working. Any suggestion for this?
same -- The "new way" above does not work in newer versions of langchain, in my case I get this error:
NotImplementedError: AsyncIteratorCallbackHandler does not implement on_chat_model_start
@ninely i'm getting this error when trying to run with LLMChain and llamacpp. Can anyone help?
/opt/homebrew/anaconda3/lib/python3.10/site-packages/langchain/llms/llamacpp.py:352: RuntimeWarning: coroutine 'AsyncCallbackManagerForLLMRun.on_llm_new_token' was never awaited
run_manager.on_llm_new_token(
RuntimeWarning: Enable tracemalloc to get the object allocation traceback
My way: use LLamaCpp, llm.stream() and yield.
import asyncio
import os
from typing import AsyncIterable, Awaitable
import uvicorn
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from langchain.llms import LlamaCpp
from langchain.cache import InMemoryCache
from langchain.globals import set_llm_cache
set_llm_cache(InMemoryCache())
app = FastAPI()
model_path="/project/llama_data/Llama-2-7b-chat-hf/ggml-model-q4_0.gguf"
llm = LlamaCpp(
model_path=model_path,
n_gpu_layers=40,
n_batch=512,
temperature=0.1,
verbose=True,
n_ctx=512
)
async def request_qa_stream(question: str):
for text in llm.stream(question):
yield text
def request_qa(question: str):
result = llm(question)
return result
class QARequest(BaseModel):
question: str
#curl "http://127.0.0.1:8000/qa/stream" -X POST -d '{"question":"who are you"}' -H 'Content-Type: application/json'
@app.post("/qa/stream")
def qa(body: QARequest):
return StreamingResponse(request_qa_stream(body.question), media_type="text/event-stream")
#curl "http://127.0.0.1:8000/qa" -X POST -d '{"question":"who are you"}' -H 'Content-Type: application/json'
@app.post("/qa")
def qa(body: QARequest):
return request_qa(body.question)
if __name__ == "__main__":
uvicorn.run(host="0.0.0.0", port=8000, app=app)
or like this
## use agenerate and callback
async def request_qa_stream(question: str) -> AsyncIterable[str]:
callback = AsyncIteratorCallbackHandler()
llm.callbacks = CallbackManager(callback)
async def wrap_done(fn: Awaitable, event: asyncio.Event):
"""Wrap an awaitable with a event to signal when it's done or an exception is raised."""
try:
await fn
except Exception as e:
# TODO: handle exception
print(f"Caught exception: {e}")
finally:
# Signal the aiter to stop.
event.set()
# Begin a task that runs in the background.
task = asyncio.create_task(wrap_done(
llm.agenerate([question]),
callback.done),
)
async for token in callback.aiter():
# Use server-sent-events to stream the response
yield f"{token}"
await task
Maybe the second way can deal with concurrent request I guess, never test concurrent request.
Hi all !
I wanted to share with you a Custom Stream Response that I implemented in my FastAPI application recently.
I created this solution to manage streaming data.
You can use Stream, Event of Langchain but I'm doing special things with the Handlers that's why I need it.
Here examples:
Fast API
@router.get("/myExample")
async def mySpecialAPI(
session_id: UUID,
input="Hello",
) -> StreamResponse:
# Note: Don't write await we need a coroutine
invoke = chain.ainvoke(..)
callback = MyCallback(..)
return StreamResponse(invoke, callback)
Custom Stream Response
from __future__ import annotations
import asyncio
import typing
from typing import Any, AsyncIterable, Coroutine
from fastapi.responses import StreamingResponse as FastApiStreamingResponse
from starlette.background import BackgroundTask
class StreamResponse(FastApiStreamingResponse):
def __init__(
self,
invoke: Coroutine,
callback: MyCustomAsyncIteratorCallbackHandler,
status_code: int = 200,
headers: typing.Mapping[str, str] | None = None,
media_type: str | None = "text/event-stream",
background: BackgroundTask | None = None,
) -> None:
super().__init__(
content=StreamResponse.send_message(callback, invoke),
status_code=status_code,
headers=headers,
media_type=media_type,
background=background,
)
@staticmethod
async def send_message(
callback: AsyncIteratorCallbackHandler, invoke: Coroutine
) -> AsyncIterable[str]:
asyncio.create_task(invoke)
async for token in callback.aiter():
yield token
My Custom Callbackhandler
from __future__ import annotations
import asyncio
from typing import Any, AsyncIterator, List
class MyCustomAsyncIteratorCallbackHandler(AsyncCallbackHandler):
"""Callback handler that returns an async iterator."""
# Note: Can be a BaseModel than str
queue: asyncio.Queue[Optional[str]]
# Pass your params as you want
def __init__(self) -> None:
self.queue = asyncio.Queue()
async def on_llm_new_token(
self,
token: str,
tags: List[str] | None = None,
**kwargs: Any,
) -> None:
self.queue.put_nowait(token)
async def on_llm_end(
self,
response: LLMResult,
tags: List[str] | None = None,
**kwargs: Any,
) -> None:
self.queue.put_nowait(None)
# Note: Ect.. for error
async def aiter(self) -> AsyncIterator[str]:
while True:
token = await self.queue.get()
if isinstance(token, str):
yield token # Note: or a BaseModel.model_dump_json() etc..
elif token is None:
self.queue.task_done()
break
https://gist.github.com/YanSte/7be29bc93f21b010f64936fa334a185f
Hi @Nathan-Intergral and @postix @ninely Hope you all doing well
Please kindly tell us how to use the mentioned Class ( AsyncIteratorCallbackHandler ) for streaming text instead of default printing stream class ( StreamingStdOutCallbackHandler )
As i have not much experience in OOP i am just using procedural progrmming .
Kindly do mention how to use so it will be usefull for other as well thanks
i just want to use in API
Any Help would be appreciated thanks