Created
December 29, 2019 16:01
-
-
Save omarsar/19bc5d597d0f2a58d216ca6b23625085 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
## configure root folder on your gdrive | |
data_dir = 'gdrive/My Drive/DAIR RESOURCES/TF to PT/datasets/hymenoptera_data' | |
## custom transformer to flatten the image tensors | |
class ReshapeTransform: | |
def __init__(self, new_size): | |
self.new_size = new_size | |
def __call__(self, img): | |
result = torch.reshape(img, self.new_size) | |
return result | |
## transformations used to standardize and normalize the datasets | |
data_transforms = { | |
'train': transforms.Compose([ | |
transforms.Resize(224), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
ReshapeTransform((-1,)) # flattens the data | |
]), | |
'val': transforms.Compose([ | |
transforms.Resize(224), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
ReshapeTransform((-1,)) # flattens the data | |
]), | |
} | |
## load the correspoding folders | |
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), | |
data_transforms[x]) | |
for x in ['train', 'val']} | |
## load the entire dataset; we are not using minibatches here | |
train_dataset = torch.utils.data.DataLoader(image_datasets['train'], | |
batch_size=len(image_datasets['train']), | |
shuffle=True) | |
test_dataset = torch.utils.data.DataLoader(image_datasets['val'], | |
batch_size=len(image_datasets['val']), | |
shuffle=True) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment