Applied Deep Learning for NLP Applications
Natural language processing (NLP) has become an important field with interest from many important sectors that leverage modern deep learning methods for approaching several NLP problems and tasks such as text summarization, question answering, and sentiment classification, to name a few. In this tutorial, we will introduce several of the fundamental NLP techniques and more modern approaches (BERT, GTP-2, etc.) and show how they can be applied via transfer learning to approach many real-world NLP problems. We will focus on how to build an NLP pipeline using several open-source tools such as Transformers, Tokenizers, spaCy, TensorFlow, and PyTorch, among others. Then we will learn how to use the NLP model to search over documents based on semantic relationships. We will use open-source technologies such as BERT and Elasticsearch for this segment to build a proof of concept. In essence, the learner will take away the important theoretical pieces ne