Created
December 29, 2019 16:07
-
-
Save omarsar/e863040027bef2877000e6007446d5d8 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class LR(nn.Module): | |
def __init__(self, dim, lr=torch.scalar_tensor(0.01)): | |
super(LR, self).__init__() | |
# intialize parameters | |
self.w = torch.zeros(dim, 1, dtype=torch.float).to(device) | |
self.b = torch.scalar_tensor(0).to(device) | |
self.grads = {"dw": torch.zeros(dim, 1, dtype=torch.float).to(device), | |
"db": torch.scalar_tensor(0).to(device)} | |
self.lr = lr.to(device) | |
def forward(self, x): | |
## compute forward | |
z = torch.mm(self.w.T, x) | |
a = self.sigmoid(z) | |
return a | |
def sigmoid(self, z): | |
return 1/(1 + torch.exp(-z)) | |
def backward(self, x, yhat, y): | |
## compute backward | |
self.grads["dw"] = (1/x.shape[1]) * torch.mm(x, (yhat - y).T) | |
self.grads["db"] = (1/x.shape[1]) * torch.sum(yhat - y) | |
def optimize(self): | |
## optimization step | |
self.w = self.w - self.lr * self.grads["dw"] | |
self.b = self.b - self.lr * self.grads["db"] | |
## utility functions | |
def loss(yhat, y): | |
m = y.size()[1] | |
return -(1/m)* torch.sum(y*torch.log(yhat) + (1 - y)* torch.log(1-yhat)) | |
def predict(yhat, y): | |
y_prediction = torch.zeros(1, y.size()[1]) | |
for i in range(yhat.size()[1]): | |
if yhat[0, i] <= 0.5: | |
y_prediction[0, i] = 0 | |
else: | |
y_prediction[0, i] = 1 | |
return 100 - torch.mean(torch.abs(y_prediction - y)) * 100 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment