Created
December 29, 2019 16:20
-
-
Save omarsar/93ad09dd62539b98f6e5136929ddae15 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
## hyperparams | |
costs = [] | |
dim = x_flatten.shape[0] | |
learning_rate = torch.scalar_tensor(0.0001).to(device) | |
num_iterations = 100 | |
lrmodel = LR(dim, learning_rate) | |
lrmodel.to(device) | |
## transform the data | |
def transform_data(x, y): | |
x_flatten = x.T | |
y = y.unsqueeze(0) | |
return x_flatten, y | |
## training the model | |
for i in range(num_iterations): | |
x, y = next(iter(train_dataset)) | |
test_x, test_y = next(iter(test_dataset)) | |
x, y = transform_data(x, y) | |
test_x, test_y = transform_data(test_x, test_y) | |
# forward | |
yhat = lrmodel.forward(x.to(device)) | |
cost = loss(yhat.data.cpu(), y) | |
train_pred = predict(yhat, y) | |
# backward | |
lrmodel.backward(x.to(device), | |
yhat.to(device), | |
y.to(device)) | |
lrmodel.optimize() | |
## test | |
yhat_test = lrmodel.forward(test_x.to(device)) | |
test_pred = predict(yhat_test, test_y) | |
if i % 10 == 0: | |
costs.append(cost) | |
if i % 10 == 0: | |
print("Cost after iteration {}: {} | Train Acc: {} | Test Acc: {}".format(i, | |
cost, | |
train_pred, | |
test_pred)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment