Created
September 18, 2024 10:00
-
-
Save pashu123/4098730c139685afdb88ecd4e5023e36 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// -----// IR Dump After EmptyTensorToAllocTensor (empty-tensor-to-alloc-tensor) //----- // | |
func.func @_fully_dynamic_pack_simple_dispatch_0_pack_i32() attributes {translation_info = #iree_codegen.translation_info<CPUDataTiling>} { | |
%c1 = arith.constant 1 : index | |
%c0 = arith.constant 0 : index | |
%c3 = arith.constant 3 : index | |
%c2 = arith.constant 2 : index | |
%c64 = arith.constant 64 : index | |
%c32_i64 = arith.constant 32 : i64 | |
%0 = hal.interface.constant.load layout(<constants = 10, bindings = [#hal.pipeline.binding<storage_buffer, ReadOnly>, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) ordinal(0) : i32 | |
%1 = hal.interface.constant.load layout(<constants = 10, bindings = [#hal.pipeline.binding<storage_buffer, ReadOnly>, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) ordinal(1) : i32 | |
%2 = hal.interface.constant.load layout(<constants = 10, bindings = [#hal.pipeline.binding<storage_buffer, ReadOnly>, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) ordinal(2) : i32 | |
%3 = hal.interface.constant.load layout(<constants = 10, bindings = [#hal.pipeline.binding<storage_buffer, ReadOnly>, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) ordinal(3) : i32 | |
%4 = hal.interface.constant.load layout(<constants = 10, bindings = [#hal.pipeline.binding<storage_buffer, ReadOnly>, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) ordinal(4) : i32 | |
%5 = hal.interface.constant.load layout(<constants = 10, bindings = [#hal.pipeline.binding<storage_buffer, ReadOnly>, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) ordinal(5) : i32 | |
%6 = hal.interface.constant.load layout(<constants = 10, bindings = [#hal.pipeline.binding<storage_buffer, ReadOnly>, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) ordinal(6) : i32 | |
%7 = hal.interface.constant.load layout(<constants = 10, bindings = [#hal.pipeline.binding<storage_buffer, ReadOnly>, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) ordinal(7) : i32 | |
%8 = hal.interface.constant.load layout(<constants = 10, bindings = [#hal.pipeline.binding<storage_buffer, ReadOnly>, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) ordinal(8) : i32 | |
%9 = hal.interface.constant.load layout(<constants = 10, bindings = [#hal.pipeline.binding<storage_buffer, ReadOnly>, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) ordinal(9) : i32 | |
%10 = arith.extui %0 : i32 to i64 | |
%11 = arith.extui %1 : i32 to i64 | |
%12 = arith.shli %11, %c32_i64 : i64 | |
%13 = arith.ori %10, %12 : i64 | |
%14 = arith.index_castui %13 : i64 to index | |
%15 = arith.extui %2 : i32 to i64 | |
%16 = arith.extui %3 : i32 to i64 | |
%17 = arith.shli %16, %c32_i64 : i64 | |
%18 = arith.ori %15, %17 : i64 | |
%19 = arith.index_castui %18 : i64 to index | |
%20 = arith.extui %4 : i32 to i64 | |
%21 = arith.extui %5 : i32 to i64 | |
%22 = arith.shli %21, %c32_i64 : i64 | |
%23 = arith.ori %20, %22 : i64 | |
%24 = arith.index_castui %23 : i64 to index | |
%25 = arith.extui %6 : i32 to i64 | |
%26 = arith.extui %7 : i32 to i64 | |
%27 = arith.shli %26, %c32_i64 : i64 | |
%28 = arith.ori %25, %27 : i64 | |
%29 = arith.index_castui %28 : i64 to index | |
%30 = arith.extui %8 : i32 to i64 | |
%31 = arith.extui %9 : i32 to i64 | |
%32 = arith.shli %31, %c32_i64 : i64 | |
%33 = arith.ori %30, %32 : i64 | |
%34 = arith.index_castui %33 : i64 to index | |
%35 = flow.dispatch.workload.ordinal %14, 0 : index | |
%36 = flow.dispatch.workload.ordinal %19, 1 : index | |
%37 = flow.dispatch.workload.ordinal %24, 2 : index | |
%38 = flow.dispatch.workload.ordinal %29, 3 : index | |
%39 = flow.dispatch.workload.ordinal %34, 4 : index | |
%40 = hal.interface.binding.subspan layout(<constants = 10, bindings = [#hal.pipeline.binding<storage_buffer, ReadOnly>, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) binding(0) alignment(64) offset(%c64) flags(ReadOnly) : !flow.dispatch.tensor<readonly:tensor<?x?xi32>>{%35, %36} | |
%41 = hal.interface.binding.subspan layout(<constants = 10, bindings = [#hal.pipeline.binding<storage_buffer, ReadOnly>, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) binding(1) alignment(64) offset(%c64) flags(Indirect) : !flow.dispatch.tensor<writeonly:tensor<?x?x?x?xi32>>{%37, %38, %39, %39} | |
%42 = flow.dispatch.tensor.load %40, offsets = [0, 0], sizes = [%35, %36], strides = [1, 1] : !flow.dispatch.tensor<readonly:tensor<?x?xi32>>{%35, %36} -> tensor<?x?xi32> | |
%43 = flow.dispatch.tensor.load %41, offsets = [0, 0, 0, 0], sizes = [%37, %38, %39, %39], strides = [1, 1, 1, 1] : !flow.dispatch.tensor<writeonly:tensor<?x?x?x?xi32>>{%37, %38, %39, %39} -> tensor<?x?x?x?xi32> | |
%44 = scf.forall (%arg0, %arg1) = (0, 0) to (%37, %38) step (64, 64) shared_outs(%arg2 = %43) -> (tensor<?x?x?x?xi32>) { | |
%45 = affine.min affine_map<(d0)[s0] -> (-d0 + s0, 64)>(%arg0)[%37] | |
%46 = affine.min affine_map<(d0)[s0] -> (-d0 + s0, 64)>(%arg1)[%38] | |
%47 = affine.apply affine_map<(d0)[s0] -> (d0 * s0)>(%arg0)[%39] | |
%48 = affine.apply affine_map<(d0)[s0] -> (d0 * s0)>(%45)[%39] | |
%49 = affine.apply affine_map<(d0)[s0] -> (d0 * s0)>(%arg1)[%39] | |
%50 = affine.apply affine_map<(d0)[s0] -> (d0 * s0)>(%46)[%39] | |
%extracted_slice = tensor.extract_slice %42[%47, %49] [%48, %50] [1, 1] : tensor<?x?xi32> to tensor<?x?xi32> | |
%dim = tensor.dim %43, %c2 : tensor<?x?x?x?xi32> | |
%dim_0 = tensor.dim %43, %c3 : tensor<?x?x?x?xi32> | |
%extracted_slice_1 = tensor.extract_slice %arg2[%arg0, %arg1, 0, 0] [%45, %46, %dim, %dim_0] [1, 1, 1, 1] : tensor<?x?x?x?xi32> to tensor<?x?x?x?xi32> | |
%51 = scf.for %arg3 = %c0 to %45 step %c1 iter_args(%arg4 = %extracted_slice_1) -> (tensor<?x?x?x?xi32>) { | |
%52 = affine.apply affine_map<(d0)[s0] -> (d0 * s0)>(%arg3)[%39] | |
%53 = scf.for %arg5 = %c0 to %46 step %c1 iter_args(%arg6 = %arg4) -> (tensor<?x?x?x?xi32>) { | |
%54 = affine.apply affine_map<(d0)[s0] -> (d0 * s0)>(%arg5)[%39] | |
%extracted_slice_2 = tensor.extract_slice %extracted_slice[%52, %54] [%39, %39] [1, 1] : tensor<?x?xi32> to tensor<?x?xi32> | |
%extracted_slice_3 = tensor.extract_slice %arg6[%arg3, %arg5, 0, 0] [1, 1, %dim, %dim_0] [1, 1, 1, 1] : tensor<?x?x?x?xi32> to tensor<1x1x?x?xi32> | |
%pack = tensor.pack %extracted_slice_2 inner_dims_pos = [0, 1] inner_tiles = [%39, %39] into %extracted_slice_3 {lowering_config = #iree_codegen.lowering_config<tile_sizes = [[64, 64], [1, 1]]>} : tensor<?x?xi32> -> tensor<1x1x?x?xi32> | |
%inserted_slice = tensor.insert_slice %pack into %arg6[%arg3, %arg5, 0, 0] [1, 1, %dim, %dim_0] [1, 1, 1, 1] : tensor<1x1x?x?xi32> into tensor<?x?x?x?xi32> | |
scf.yield %inserted_slice : tensor<?x?x?x?xi32> | |
} | |
scf.yield %53 : tensor<?x?x?x?xi32> | |
} | |
scf.forall.in_parallel { | |
tensor.parallel_insert_slice %51 into %arg2[%arg0, %arg1, 0, 0] [%45, %46, %39, %39] [1, 1, 1, 1] : tensor<?x?x?x?xi32> into tensor<?x?x?x?xi32> | |
} | |
} {mapping = [#iree_codegen.workgroup_mapping<y>, #iree_codegen.workgroup_mapping<x>]} | |
flow.dispatch.tensor.store %44, %41, offsets = [0, 0, 0, 0], sizes = [%37, %38, %39, %39], strides = [1, 1, 1, 1] : tensor<?x?x?x?xi32> -> !flow.dispatch.tensor<writeonly:tensor<?x?x?x?xi32>>{%37, %38, %39, %39} | |
return | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment