Created
May 23, 2022 05:35
-
-
Save pashu123/4de3434b3b4cffab72ee44e0840efd42 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from PIL import Image | |
import requests | |
import torch | |
import torchvision.models as models | |
from torchvision import transforms | |
import sys | |
from shark.shark_runner import SharkInference | |
from torch.ao.quantization import get_default_qconfig | |
import torch.quantization.quantize_fx as quantize_fx | |
from torch.ao.quantization.quantize_fx import convert_fx, prepare_fx, fuse_fx | |
################################## Preprocessing inputs and model ############ | |
def load_and_preprocess_image(url: str): | |
headers = { | |
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36" | |
} | |
img = Image.open( | |
requests.get(url, headers=headers, stream=True).raw | |
).convert("RGB") | |
# preprocessing pipeline | |
preprocess = transforms.Compose( | |
[ | |
transforms.Resize(256), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
transforms.Normalize( | |
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] | |
), | |
] | |
) | |
img_preprocessed = preprocess(img) | |
return torch.unsqueeze(img_preprocessed, 0) | |
def load_labels(): | |
classes_text = requests.get( | |
"https://raw.githubusercontent.com/cathyzhyi/ml-data/main/imagenet-classes.txt", | |
stream=True, | |
).text | |
labels = [line.strip() for line in classes_text.splitlines()] | |
return labels | |
def top3_possibilities(res): | |
_, indexes = torch.sort(res, descending=True) | |
percentage = torch.nn.functional.softmax(res, dim=1)[0] * 100 | |
top3 = [(labels[idx], percentage[idx].item()) for idx in indexes[0][:3]] | |
return top3 | |
def fuse_model(model): | |
for module_name, module in model.named_children(): | |
if "layer" in module_name: | |
for basic_block_name, basic_block in module.named_children(): | |
torch.quantization.fuse_modules(basic_block, [["conv1", "bn1", "relu"], ["conv2", "bn2"]], inplace=True) | |
# torch.quantization.fuse_modules(basic_block, [["conv1", "bn1", "relu" ,"conv2", "bn2"]], inplace=True) | |
for sub_block_name, sub_block in basic_block.named_children(): | |
if sub_block_name == "downsample": | |
torch.quantization.fuse_modules(sub_block, [["0", "1"]], inplace=True) | |
return model | |
class Resnet50Module(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.resnet = fuse_model(models.resnet50(pretrained=True).eval()) | |
self.train(False) | |
def forward(self, img): | |
return self.resnet.forward(img) | |
image_url = "https://upload.wikimedia.org/wikipedia/commons/2/26/YellowLabradorLooking_new.jpg" | |
print("load image from " + image_url, file=sys.stderr) | |
img = load_and_preprocess_image(image_url) | |
labels = load_labels() | |
############################################################################## | |
input = torch.randn(1, 3, 224, 224).to(torch.int8) | |
print(input.shape) | |
## The img is passed to determine the input shape. | |
shark_module = SharkInference(Resnet50Module(), (input,)) | |
## Can pass any img or input to the forward module. | |
results = shark_module.benchmark_forward((input,)) | |
print("The top 3 results obtained via shark_runner is:") | |
print(top3_possibilities(torch.from_numpy(results))) | |
print() | |
print("The top 3 results obtained via torch is:") | |
print(top3_possibilities(Resnet50Module()(img))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment