Created
March 10, 2025 17:04
-
-
Save pashu123/568dc8aa664243a47635c5e0e7b38b38 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#map = affine_map<(d0, d1) -> (d0, d1)> | |
#map1 = affine_map<(d0, d1) -> (d1, d0)> | |
module { | |
func.func @matmul_add_transpose(%arg0: tensor<4x4xf32>, %arg1: tensor<4x4xf32>) -> tensor<4x4xf32> { | |
%0 = tensor.empty() : tensor<4x4xf32> | |
%c2 = arith.constant 2 : index | |
%c4 = arith.constant 4 : index | |
%c0 = arith.constant 0 : index | |
%1 = tensor.empty() : tensor<4x4xf32> | |
%2 = scf.for %arg2 = %c0 to %c4 step %c2 iter_args(%arg3 = %1) -> (tensor<4x4xf32>) { | |
%4 = scf.for %arg4 = %c0 to %c4 step %c2 iter_args(%arg5 = %arg3) -> (tensor<4x4xf32>) { | |
%extracted_slice = tensor.extract_slice %arg0[%arg2, 0] [2, 4] [1, 1] : tensor<4x4xf32> to tensor<2x4xf32> | |
%extracted_slice_0 = tensor.extract_slice %arg1[0, %arg4] [4, 2] [1, 1] : tensor<4x4xf32> to tensor<4x2xf32> | |
%extracted_slice_1 = tensor.extract_slice %arg5[%arg2, %arg4] [2, 2] [1, 1] : tensor<4x4xf32> to tensor<2x2xf32> | |
%5 = linalg.matmul ins(%extracted_slice, %extracted_slice_0 : tensor<2x4xf32>, tensor<4x2xf32>) outs(%extracted_slice_1 : tensor<2x2xf32>) -> tensor<2x2xf32> | |
%inserted_slice = tensor.insert_slice %5 into %arg5[%arg2, %arg4] [2, 2] [1, 1] : tensor<2x2xf32> into tensor<4x4xf32> | |
scf.yield %inserted_slice : tensor<4x4xf32> | |
} | |
scf.yield %4 : tensor<4x4xf32> | |
} | |
%3 = linalg.generic {indexing_maps = [#map, #map1, #map], iterator_types = ["parallel", "parallel"]} ins(%2, %2 : tensor<4x4xf32>, tensor<4x4xf32>) outs(%0 : tensor<4x4xf32>) { | |
^bb0(%in: f32, %in_0: f32, %out: f32): | |
%4 = arith.addf %in, %in_0 : f32 | |
linalg.yield %4 : f32 | |
} -> tensor<4x4xf32> | |
return %3 : tensor<4x4xf32> | |
} | |
} | |
module attributes {transform.with_named_sequence} { | |
transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) { | |
%yield = transform.structured.match ops{["tensor.insert_slice"]} in %arg1 | |
: (!transform.any_op) -> !transform.any_op | |
%a, %b = transform.test.fuse_consumer %yield | |
: (!transform.any_op) -> (!transform.any_op, !transform.any_op) | |
transform.yield | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment