Created
February 14, 2022 12:29
-
-
Save pashu123/6040e1bb67de081c45fbea11963af2ad to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#loc0 = loc(unknown) | |
module attributes {torch.debug_module_name = "MobilenetV3Module"} { | |
func @forward(%arg0: !torch.vtensor<[?,3,?,?],f32> loc(unknown)) -> !torch.vtensor { | |
%0 = torch.vtensor.literal(dense<0.000000e+00> : tensor<1000xf32>) : !torch.vtensor<[1000],f32> loc(#loc0) | |
%1 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<1000x1024xf32>) : !torch.vtensor<[1000,1024],f32> loc(#loc0) | |
%2 = torch.vtensor.literal(dense<0.000000e+00> : tensor<1024xf32>) : !torch.vtensor<[1024],f32> loc(#loc0) | |
%3 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<1024x576xf32>) : !torch.vtensor<[1024,576],f32> loc(#loc0) | |
%4 = torch.vtensor.literal(dense<0.000000e+00> : tensor<576xf32>) : !torch.vtensor<[576],f32> loc(#loc0) | |
%5 = torch.vtensor.literal(dense<1.000000e+00> : tensor<576xf32>) : !torch.vtensor<[576],f32> loc(#loc0) | |
%none = torch.constant.none loc(#loc1) | |
%6 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<576x96x1x1xf32>) : !torch.vtensor<[576,96,1,1],f32> loc(#loc0) | |
%7 = torch.vtensor.literal(dense<0.000000e+00> : tensor<96xf32>) : !torch.vtensor<[96],f32> loc(#loc0) | |
%8 = torch.vtensor.literal(dense<1.000000e+00> : tensor<96xf32>) : !torch.vtensor<[96],f32> loc(#loc0) | |
%9 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<96x576x1x1xf32>) : !torch.vtensor<[96,576,1,1],f32> loc(#loc0) | |
%10 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<576x144x1x1xf32>) : !torch.vtensor<[576,144,1,1],f32> loc(#loc0) | |
%11 = torch.vtensor.literal(dense<0.000000e+00> : tensor<144xf32>) : !torch.vtensor<[144],f32> loc(#loc0) | |
%12 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<144x576x1x1xf32>) : !torch.vtensor<[144,576,1,1],f32> loc(#loc0) | |
%13 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<576x1x5x5xf32>) : !torch.vtensor<[576,1,5,5],f32> loc(#loc0) | |
%14 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<576x96x1x1xf32>) : !torch.vtensor<[576,96,1,1],f32> loc(#loc0) | |
%15 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<96x576x1x1xf32>) : !torch.vtensor<[96,576,1,1],f32> loc(#loc0) | |
%16 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<576x144x1x1xf32>) : !torch.vtensor<[576,144,1,1],f32> loc(#loc0) | |
%17 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<144x576x1x1xf32>) : !torch.vtensor<[144,576,1,1],f32> loc(#loc0) | |
%18 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<576x1x5x5xf32>) : !torch.vtensor<[576,1,5,5],f32> loc(#loc0) | |
%19 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<576x96x1x1xf32>) : !torch.vtensor<[576,96,1,1],f32> loc(#loc0) | |
%20 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<96x288x1x1xf32>) : !torch.vtensor<[96,288,1,1],f32> loc(#loc0) | |
%21 = torch.vtensor.literal(dense<0.000000e+00> : tensor<288xf32>) : !torch.vtensor<[288],f32> loc(#loc0) | |
%22 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<288x72x1x1xf32>) : !torch.vtensor<[288,72,1,1],f32> loc(#loc0) | |
%23 = torch.vtensor.literal(dense<0.000000e+00> : tensor<72xf32>) : !torch.vtensor<[72],f32> loc(#loc0) | |
%24 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<72x288x1x1xf32>) : !torch.vtensor<[72,288,1,1],f32> loc(#loc0) | |
%25 = torch.vtensor.literal(dense<1.000000e+00> : tensor<288xf32>) : !torch.vtensor<[288],f32> loc(#loc0) | |
%26 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<288x1x5x5xf32>) : !torch.vtensor<[288,1,5,5],f32> loc(#loc0) | |
%27 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<288x48x1x1xf32>) : !torch.vtensor<[288,48,1,1],f32> loc(#loc0) | |
%28 = torch.vtensor.literal(dense<0.000000e+00> : tensor<48xf32>) : !torch.vtensor<[48],f32> loc(#loc0) | |
%29 = torch.vtensor.literal(dense<1.000000e+00> : tensor<48xf32>) : !torch.vtensor<[48],f32> loc(#loc0) | |
%30 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<48x144x1x1xf32>) : !torch.vtensor<[48,144,1,1],f32> loc(#loc0) | |
%31 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<144x40x1x1xf32>) : !torch.vtensor<[144,40,1,1],f32> loc(#loc0) | |
%32 = torch.vtensor.literal(dense<0.000000e+00> : tensor<40xf32>) : !torch.vtensor<[40],f32> loc(#loc0) | |
%33 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<40x144x1x1xf32>) : !torch.vtensor<[40,144,1,1],f32> loc(#loc0) | |
%34 = torch.vtensor.literal(dense<1.000000e+00> : tensor<144xf32>) : !torch.vtensor<[144],f32> loc(#loc0) | |
%35 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<144x1x5x5xf32>) : !torch.vtensor<[144,1,5,5],f32> loc(#loc0) | |
%36 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<144x48x1x1xf32>) : !torch.vtensor<[144,48,1,1],f32> loc(#loc0) | |
%37 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<48x120x1x1xf32>) : !torch.vtensor<[48,120,1,1],f32> loc(#loc0) | |
%38 = torch.vtensor.literal(dense<0.000000e+00> : tensor<120xf32>) : !torch.vtensor<[120],f32> loc(#loc0) | |
%39 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<120x32x1x1xf32>) : !torch.vtensor<[120,32,1,1],f32> loc(#loc0) | |
%40 = torch.vtensor.literal(dense<0.000000e+00> : tensor<32xf32>) : !torch.vtensor<[32],f32> loc(#loc0) | |
%41 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<32x120x1x1xf32>) : !torch.vtensor<[32,120,1,1],f32> loc(#loc0) | |
%42 = torch.vtensor.literal(dense<1.000000e+00> : tensor<120xf32>) : !torch.vtensor<[120],f32> loc(#loc0) | |
%43 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<120x1x5x5xf32>) : !torch.vtensor<[120,1,5,5],f32> loc(#loc0) | |
%44 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<120x40x1x1xf32>) : !torch.vtensor<[120,40,1,1],f32> loc(#loc0) | |
%45 = torch.vtensor.literal(dense<1.000000e+00> : tensor<40xf32>) : !torch.vtensor<[40],f32> loc(#loc0) | |
%46 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<40x240x1x1xf32>) : !torch.vtensor<[40,240,1,1],f32> loc(#loc0) | |
%47 = torch.vtensor.literal(dense<0.000000e+00> : tensor<240xf32>) : !torch.vtensor<[240],f32> loc(#loc0) | |
%48 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<240x64x1x1xf32>) : !torch.vtensor<[240,64,1,1],f32> loc(#loc0) | |
%49 = torch.vtensor.literal(dense<0.000000e+00> : tensor<64xf32>) : !torch.vtensor<[64],f32> loc(#loc0) | |
%50 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<64x240x1x1xf32>) : !torch.vtensor<[64,240,1,1],f32> loc(#loc0) | |
%51 = torch.vtensor.literal(dense<1.000000e+00> : tensor<240xf32>) : !torch.vtensor<[240],f32> loc(#loc0) | |
%52 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<240x1x5x5xf32>) : !torch.vtensor<[240,1,5,5],f32> loc(#loc0) | |
%53 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<240x40x1x1xf32>) : !torch.vtensor<[240,40,1,1],f32> loc(#loc0) | |
%54 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<40x240x1x1xf32>) : !torch.vtensor<[40,240,1,1],f32> loc(#loc0) | |
%55 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<240x64x1x1xf32>) : !torch.vtensor<[240,64,1,1],f32> loc(#loc0) | |
%56 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<64x240x1x1xf32>) : !torch.vtensor<[64,240,1,1],f32> loc(#loc0) | |
%57 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<240x1x5x5xf32>) : !torch.vtensor<[240,1,5,5],f32> loc(#loc0) | |
%58 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<240x40x1x1xf32>) : !torch.vtensor<[240,40,1,1],f32> loc(#loc0) | |
%59 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<40x96x1x1xf32>) : !torch.vtensor<[40,96,1,1],f32> loc(#loc0) | |
%60 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<96x24x1x1xf32>) : !torch.vtensor<[96,24,1,1],f32> loc(#loc0) | |
%61 = torch.vtensor.literal(dense<0.000000e+00> : tensor<24xf32>) : !torch.vtensor<[24],f32> loc(#loc0) | |
%62 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<24x96x1x1xf32>) : !torch.vtensor<[24,96,1,1],f32> loc(#loc0) | |
%63 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<96x1x5x5xf32>) : !torch.vtensor<[96,1,5,5],f32> loc(#loc0) | |
%64 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<96x24x1x1xf32>) : !torch.vtensor<[96,24,1,1],f32> loc(#loc0) | |
%65 = torch.vtensor.literal(dense<1.000000e+00> : tensor<24xf32>) : !torch.vtensor<[24],f32> loc(#loc0) | |
%66 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<24x88x1x1xf32>) : !torch.vtensor<[24,88,1,1],f32> loc(#loc0) | |
%67 = torch.vtensor.literal(dense<0.000000e+00> : tensor<88xf32>) : !torch.vtensor<[88],f32> loc(#loc0) | |
%68 = torch.vtensor.literal(dense<1.000000e+00> : tensor<88xf32>) : !torch.vtensor<[88],f32> loc(#loc0) | |
%69 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<88x1x3x3xf32>) : !torch.vtensor<[88,1,3,3],f32> loc(#loc0) | |
%70 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<88x24x1x1xf32>) : !torch.vtensor<[88,24,1,1],f32> loc(#loc0) | |
%71 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<24x72x1x1xf32>) : !torch.vtensor<[24,72,1,1],f32> loc(#loc0) | |
%72 = torch.vtensor.literal(dense<1.000000e+00> : tensor<72xf32>) : !torch.vtensor<[72],f32> loc(#loc0) | |
%73 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<72x1x3x3xf32>) : !torch.vtensor<[72,1,3,3],f32> loc(#loc0) | |
%74 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<72x16x1x1xf32>) : !torch.vtensor<[72,16,1,1],f32> loc(#loc0) | |
%75 = torch.vtensor.literal(dense<0.000000e+00> : tensor<16xf32>) : !torch.vtensor<[16],f32> loc(#loc0) | |
%76 = torch.vtensor.literal(dense<1.000000e+00> : tensor<16xf32>) : !torch.vtensor<[16],f32> loc(#loc0) | |
%77 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<16x16x1x1xf32>) : !torch.vtensor<[16,16,1,1],f32> loc(#loc0) | |
%78 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<16x8x1x1xf32>) : !torch.vtensor<[16,8,1,1],f32> loc(#loc0) | |
%79 = torch.vtensor.literal(dense<0.000000e+00> : tensor<8xf32>) : !torch.vtensor<[8],f32> loc(#loc0) | |
%80 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<8x16x1x1xf32>) : !torch.vtensor<[8,16,1,1],f32> loc(#loc0) | |
%81 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<16x1x3x3xf32>) : !torch.vtensor<[16,1,3,3],f32> loc(#loc0) | |
%82 = torch.vtensor.literal(opaque<"elided_large_const", "0xDEADBEEF"> : tensor<16x3x3x3xf32>) : !torch.vtensor<[16,3,3,3],f32> loc(#loc0) | |
%str = torch.constant.str "dropout probability has to be between 0 and 1, but got {}" loc(#loc2) | |
%float0.000000e00 = torch.constant.float 0.000000e+00 loc(#loc3) | |
%float1.000000e00 = torch.constant.float 1.000000e+00 loc(#loc4) | |
%float2.000000e-01 = torch.constant.float 2.000000e-01 loc(#loc5) | |
%int1 = torch.constant.int 1 loc(#loc6) | |
%str_0 = torch.constant.str "AssertionError: " loc(#loc7) | |
%int2 = torch.constant.int 2 loc(#loc8) | |
%int16 = torch.constant.int 16 loc(#loc9) | |
%int72 = torch.constant.int 72 loc(#loc9) | |
%int88 = torch.constant.int 88 loc(#loc9) | |
%int96 = torch.constant.int 96 loc(#loc9) | |
%int240 = torch.constant.int 240 loc(#loc9) | |
%int120 = torch.constant.int 120 loc(#loc9) | |
%int144 = torch.constant.int 144 loc(#loc9) | |
%int288 = torch.constant.int 288 loc(#loc9) | |
%int576 = torch.constant.int 576 loc(#loc9) | |
%float1.000000e-02 = torch.constant.float 1.000000e-02 loc(#loc10) | |
%float1.000000e-03 = torch.constant.float 1.000000e-03 loc(#loc11) | |
%int0 = torch.constant.int 0 loc(#loc12) | |
%int-1 = torch.constant.int -1 loc(#loc13) | |
%true = torch.constant.bool true loc(#loc14) | |
%false = torch.constant.bool false loc(#loc15) | |
%83 = torch.prim.ListConstruct %int2, %int2 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc16) | |
%84 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc16) | |
%85 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc16) | |
%86 = torch.aten.conv2d %arg0, %82, %none, %83, %84, %85, %int1 : !torch.vtensor<[?,3,?,?],f32>, !torch.vtensor<[16,3,3,3],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,16,?,?],f32> loc(#loc17) | |
%87 = torch.aten.batch_norm %86, %76, %75, %75, %76, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,16,?,?],f32>, !torch.vtensor<[16],f32>, !torch.vtensor<[16],f32>, !torch.vtensor<[16],f32>, !torch.vtensor<[16],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,16,?,?],f32> loc(#loc18) | |
%88 = torch.copy.to_tensor %87 : !torch.tensor<[?,16,?,?],f32> loc(#loc18) | |
%89 = torch.operator "aten.hardswish_"(%88) : (!torch.tensor<[?,16,?,?],f32>) -> !torch.tensor loc(#loc19) | |
%90 = torch.prim.ListConstruct %int2, %int2 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%91 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%92 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%93 = torch.copy.to_vtensor %89 : !torch.vtensor loc(#loc21) | |
%94 = torch.aten.conv2d %93, %81, %none, %90, %91, %92, %int16 : !torch.vtensor, !torch.vtensor<[16,1,3,3],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,?,?,?],unk> loc(#loc21) | |
%95 = torch.aten.batch_norm %94, %76, %75, %75, %76, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[16],f32>, !torch.vtensor<[16],f32>, !torch.vtensor<[16],f32>, !torch.vtensor<[16],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,?,?,?],unk> loc(#loc22) | |
%96 = torch.aten.relu %95 : !torch.vtensor<[?,?,?,?],unk> -> !torch.vtensor<[?,?,?,?],unk> loc(#loc23) | |
%97 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc24) | |
%98 = torch.aten.adaptive_avg_pool2d %96, %97 : !torch.vtensor<[?,?,?,?],unk>, !torch.list<!torch.int> -> !torch.vtensor<[?,?,1,1],unk> loc(#loc25) | |
%99 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc26) | |
%100 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc26) | |
%101 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc26) | |
%102 = torch.aten.conv2d %98, %80, %79, %99, %100, %101, %int1 : !torch.vtensor<[?,?,1,1],unk>, !torch.vtensor<[8,16,1,1],f32>, !torch.vtensor<[8],f32>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,8,1,1],unk> loc(#loc27) | |
%103 = torch.aten.relu %102 : !torch.vtensor<[?,8,1,1],unk> -> !torch.vtensor<[?,8,1,1],unk> loc(#loc28) | |
%104 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc29) | |
%105 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc29) | |
%106 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc29) | |
%107 = torch.aten.conv2d %103, %78, %75, %104, %105, %106, %int1 : !torch.vtensor<[?,8,1,1],unk>, !torch.vtensor<[16,8,1,1],f32>, !torch.vtensor<[16],f32>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,16,1,1],unk> loc(#loc30) | |
%108 = torch.copy.to_tensor %107 : !torch.tensor<[?,16,1,1],unk> loc(#loc30) | |
%109 = torch.operator "aten.hardsigmoid"(%108) : (!torch.tensor<[?,16,1,1],unk>) -> !torch.tensor loc(#loc31) | |
%110 = torch.copy.to_vtensor %109 : !torch.vtensor loc(#loc32) | |
%111 = torch.aten.mul.Tensor %110, %96 : !torch.vtensor, !torch.vtensor<[?,?,?,?],unk> -> !torch.vtensor loc(#loc32) | |
%112 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%113 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%114 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%115 = torch.aten.conv2d %111, %77, %none, %112, %113, %114, %int1 : !torch.vtensor, !torch.vtensor<[16,16,1,1],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,?,?,?],unk> loc(#loc21) | |
%116 = torch.aten.batch_norm %115, %76, %75, %75, %76, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[16],f32>, !torch.vtensor<[16],f32>, !torch.vtensor<[16],f32>, !torch.vtensor<[16],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,?,?,?],unk> loc(#loc22) | |
%117 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%118 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%119 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%120 = torch.aten.conv2d %116, %74, %none, %117, %118, %119, %int1 : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[72,16,1,1],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,72,?,?],unk> loc(#loc21) | |
%121 = torch.aten.batch_norm %120, %72, %23, %23, %72, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,72,?,?],unk>, !torch.vtensor<[72],f32>, !torch.vtensor<[72],f32>, !torch.vtensor<[72],f32>, !torch.vtensor<[72],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,72,?,?],unk> loc(#loc22) | |
%122 = torch.aten.relu %121 : !torch.vtensor<[?,72,?,?],unk> -> !torch.vtensor<[?,72,?,?],unk> loc(#loc23) | |
%123 = torch.prim.ListConstruct %int2, %int2 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%124 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%125 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%126 = torch.aten.conv2d %122, %73, %none, %123, %124, %125, %int72 : !torch.vtensor<[?,72,?,?],unk>, !torch.vtensor<[72,1,3,3],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,72,?,?],unk> loc(#loc21) | |
%127 = torch.aten.batch_norm %126, %72, %23, %23, %72, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,72,?,?],unk>, !torch.vtensor<[72],f32>, !torch.vtensor<[72],f32>, !torch.vtensor<[72],f32>, !torch.vtensor<[72],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,72,?,?],unk> loc(#loc22) | |
%128 = torch.aten.relu %127 : !torch.vtensor<[?,72,?,?],unk> -> !torch.vtensor<[?,72,?,?],unk> loc(#loc23) | |
%129 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%130 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%131 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%132 = torch.aten.conv2d %128, %71, %none, %129, %130, %131, %int1 : !torch.vtensor<[?,72,?,?],unk>, !torch.vtensor<[24,72,1,1],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,24,?,?],unk> loc(#loc21) | |
%133 = torch.aten.batch_norm %132, %65, %61, %61, %65, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,24,?,?],unk>, !torch.vtensor<[24],f32>, !torch.vtensor<[24],f32>, !torch.vtensor<[24],f32>, !torch.vtensor<[24],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,24,?,?],unk> loc(#loc22) | |
%134 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%135 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%136 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%137 = torch.aten.conv2d %133, %70, %none, %134, %135, %136, %int1 : !torch.vtensor<[?,24,?,?],unk>, !torch.vtensor<[88,24,1,1],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,88,?,?],unk> loc(#loc21) | |
%138 = torch.aten.batch_norm %137, %68, %67, %67, %68, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,88,?,?],unk>, !torch.vtensor<[88],f32>, !torch.vtensor<[88],f32>, !torch.vtensor<[88],f32>, !torch.vtensor<[88],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,88,?,?],unk> loc(#loc22) | |
%139 = torch.aten.relu %138 : !torch.vtensor<[?,88,?,?],unk> -> !torch.vtensor<[?,88,?,?],unk> loc(#loc23) | |
%140 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%141 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%142 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%143 = torch.aten.conv2d %139, %69, %none, %140, %141, %142, %int88 : !torch.vtensor<[?,88,?,?],unk>, !torch.vtensor<[88,1,3,3],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,88,?,?],unk> loc(#loc21) | |
%144 = torch.aten.batch_norm %143, %68, %67, %67, %68, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,88,?,?],unk>, !torch.vtensor<[88],f32>, !torch.vtensor<[88],f32>, !torch.vtensor<[88],f32>, !torch.vtensor<[88],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,88,?,?],unk> loc(#loc22) | |
%145 = torch.aten.relu %144 : !torch.vtensor<[?,88,?,?],unk> -> !torch.vtensor<[?,88,?,?],unk> loc(#loc23) | |
%146 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%147 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%148 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%149 = torch.aten.conv2d %145, %66, %none, %146, %147, %148, %int1 : !torch.vtensor<[?,88,?,?],unk>, !torch.vtensor<[24,88,1,1],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,24,?,?],unk> loc(#loc21) | |
%150 = torch.aten.batch_norm %149, %65, %61, %61, %65, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,24,?,?],unk>, !torch.vtensor<[24],f32>, !torch.vtensor<[24],f32>, !torch.vtensor<[24],f32>, !torch.vtensor<[24],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,24,?,?],unk> loc(#loc22) | |
%151 = torch.aten.add.Tensor %150, %133, %int1 : !torch.vtensor<[?,24,?,?],unk>, !torch.vtensor<[?,24,?,?],unk>, !torch.int -> !torch.vtensor<[?,24,?,?],unk> loc(#loc33) | |
%152 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%153 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%154 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%155 = torch.aten.conv2d %151, %64, %none, %152, %153, %154, %int1 : !torch.vtensor<[?,24,?,?],unk>, !torch.vtensor<[96,24,1,1],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,96,?,?],unk> loc(#loc21) | |
%156 = torch.aten.batch_norm %155, %8, %7, %7, %8, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,96,?,?],unk>, !torch.vtensor<[96],f32>, !torch.vtensor<[96],f32>, !torch.vtensor<[96],f32>, !torch.vtensor<[96],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,96,?,?],unk> loc(#loc22) | |
%157 = torch.copy.to_tensor %156 : !torch.tensor<[?,96,?,?],unk> loc(#loc22) | |
%158 = torch.operator "aten.hardswish_"(%157) : (!torch.tensor<[?,96,?,?],unk>) -> !torch.tensor loc(#loc34) | |
%159 = torch.prim.ListConstruct %int2, %int2 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%160 = torch.prim.ListConstruct %int2, %int2 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%161 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%162 = torch.copy.to_vtensor %158 : !torch.vtensor loc(#loc21) | |
%163 = torch.aten.conv2d %162, %63, %none, %159, %160, %161, %int96 : !torch.vtensor, !torch.vtensor<[96,1,5,5],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,?,?,?],unk> loc(#loc21) | |
%164 = torch.aten.batch_norm %163, %8, %7, %7, %8, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[96],f32>, !torch.vtensor<[96],f32>, !torch.vtensor<[96],f32>, !torch.vtensor<[96],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,?,?,?],unk> loc(#loc22) | |
%165 = torch.copy.to_tensor %164 : !torch.tensor<[?,?,?,?],unk> loc(#loc22) | |
%166 = torch.operator "aten.hardswish_"(%165) : (!torch.tensor<[?,?,?,?],unk>) -> !torch.tensor loc(#loc34) | |
%167 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc24) | |
%168 = torch.copy.to_vtensor %166 : !torch.vtensor loc(#loc35) | |
%169 = torch.aten.dim %168 : !torch.vtensor -> !torch.int loc(#loc35) | |
%170 = torch.aten.gt.int %169, %int2 : !torch.int, !torch.int -> !torch.bool loc(#loc35) | |
torch.prim.If %170 -> () { | |
torch.prim.If.yield loc(#loc36) | |
} else { | |
torch.prim.RaiseException %str_0, %none : !torch.str, !torch.none loc(#loc36) | |
torch.prim.If.yield loc(#loc36) | |
} loc(#loc36) | |
%171 = torch.copy.to_vtensor %166 : !torch.vtensor loc(#loc25) | |
%172 = torch.aten.adaptive_avg_pool2d %171, %167 : !torch.vtensor, !torch.list<!torch.int> -> !torch.vtensor loc(#loc25) | |
%173 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc26) | |
%174 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc26) | |
%175 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc26) | |
%176 = torch.aten.conv2d %172, %62, %61, %173, %174, %175, %int1 : !torch.vtensor, !torch.vtensor<[24,96,1,1],f32>, !torch.vtensor<[24],f32>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,?,?,?],unk> loc(#loc27) | |
%177 = torch.aten.relu %176 : !torch.vtensor<[?,?,?,?],unk> -> !torch.vtensor<[?,?,?,?],unk> loc(#loc28) | |
%178 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc29) | |
%179 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc29) | |
%180 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc29) | |
%181 = torch.aten.conv2d %177, %60, %7, %178, %179, %180, %int1 : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[96,24,1,1],f32>, !torch.vtensor<[96],f32>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,96,?,?],unk> loc(#loc30) | |
%182 = torch.copy.to_tensor %181 : !torch.tensor<[?,96,?,?],unk> loc(#loc30) | |
%183 = torch.operator "aten.hardsigmoid"(%182) : (!torch.tensor<[?,96,?,?],unk>) -> !torch.tensor loc(#loc31) | |
%184 = torch.copy.to_vtensor %183 : !torch.vtensor loc(#loc32) | |
%185 = torch.copy.to_vtensor %166 : !torch.vtensor loc(#loc32) | |
%186 = torch.aten.mul.Tensor %184, %185 : !torch.vtensor, !torch.vtensor -> !torch.vtensor loc(#loc32) | |
%187 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%188 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%189 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%190 = torch.aten.conv2d %186, %59, %none, %187, %188, %189, %int1 : !torch.vtensor, !torch.vtensor<[40,96,1,1],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,?,?,?],unk> loc(#loc21) | |
%191 = torch.aten.batch_norm %190, %45, %32, %32, %45, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[40],f32>, !torch.vtensor<[40],f32>, !torch.vtensor<[40],f32>, !torch.vtensor<[40],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,?,?,?],unk> loc(#loc22) | |
%192 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%193 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%194 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%195 = torch.aten.conv2d %191, %58, %none, %192, %193, %194, %int1 : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[240,40,1,1],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,240,?,?],unk> loc(#loc21) | |
%196 = torch.aten.batch_norm %195, %51, %47, %47, %51, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,240,?,?],unk>, !torch.vtensor<[240],f32>, !torch.vtensor<[240],f32>, !torch.vtensor<[240],f32>, !torch.vtensor<[240],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,240,?,?],unk> loc(#loc22) | |
%197 = torch.copy.to_tensor %196 : !torch.tensor<[?,240,?,?],unk> loc(#loc22) | |
%198 = torch.operator "aten.hardswish_"(%197) : (!torch.tensor<[?,240,?,?],unk>) -> !torch.tensor loc(#loc34) | |
%199 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%200 = torch.prim.ListConstruct %int2, %int2 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%201 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%202 = torch.copy.to_vtensor %198 : !torch.vtensor loc(#loc21) | |
%203 = torch.aten.conv2d %202, %57, %none, %199, %200, %201, %int240 : !torch.vtensor, !torch.vtensor<[240,1,5,5],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,?,?,?],unk> loc(#loc21) | |
%204 = torch.aten.batch_norm %203, %51, %47, %47, %51, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[240],f32>, !torch.vtensor<[240],f32>, !torch.vtensor<[240],f32>, !torch.vtensor<[240],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,?,?,?],unk> loc(#loc22) | |
%205 = torch.copy.to_tensor %204 : !torch.tensor<[?,?,?,?],unk> loc(#loc22) | |
%206 = torch.operator "aten.hardswish_"(%205) : (!torch.tensor<[?,?,?,?],unk>) -> !torch.tensor loc(#loc34) | |
%207 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc24) | |
%208 = torch.copy.to_vtensor %206 : !torch.vtensor loc(#loc35) | |
%209 = torch.aten.dim %208 : !torch.vtensor -> !torch.int loc(#loc35) | |
%210 = torch.aten.gt.int %209, %int2 : !torch.int, !torch.int -> !torch.bool loc(#loc35) | |
torch.prim.If %210 -> () { | |
torch.prim.If.yield loc(#loc36) | |
} else { | |
torch.prim.RaiseException %str_0, %none : !torch.str, !torch.none loc(#loc36) | |
torch.prim.If.yield loc(#loc36) | |
} loc(#loc36) | |
%211 = torch.copy.to_vtensor %206 : !torch.vtensor loc(#loc25) | |
%212 = torch.aten.adaptive_avg_pool2d %211, %207 : !torch.vtensor, !torch.list<!torch.int> -> !torch.vtensor loc(#loc25) | |
%213 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc26) | |
%214 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc26) | |
%215 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc26) | |
%216 = torch.aten.conv2d %212, %56, %49, %213, %214, %215, %int1 : !torch.vtensor, !torch.vtensor<[64,240,1,1],f32>, !torch.vtensor<[64],f32>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,?,?,?],unk> loc(#loc27) | |
%217 = torch.aten.relu %216 : !torch.vtensor<[?,?,?,?],unk> -> !torch.vtensor<[?,?,?,?],unk> loc(#loc28) | |
%218 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc29) | |
%219 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc29) | |
%220 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc29) | |
%221 = torch.aten.conv2d %217, %55, %47, %218, %219, %220, %int1 : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[240,64,1,1],f32>, !torch.vtensor<[240],f32>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,240,?,?],unk> loc(#loc30) | |
%222 = torch.copy.to_tensor %221 : !torch.tensor<[?,240,?,?],unk> loc(#loc30) | |
%223 = torch.operator "aten.hardsigmoid"(%222) : (!torch.tensor<[?,240,?,?],unk>) -> !torch.tensor loc(#loc31) | |
%224 = torch.copy.to_vtensor %223 : !torch.vtensor loc(#loc32) | |
%225 = torch.copy.to_vtensor %206 : !torch.vtensor loc(#loc32) | |
%226 = torch.aten.mul.Tensor %224, %225 : !torch.vtensor, !torch.vtensor -> !torch.vtensor loc(#loc32) | |
%227 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%228 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%229 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%230 = torch.aten.conv2d %226, %54, %none, %227, %228, %229, %int1 : !torch.vtensor, !torch.vtensor<[40,240,1,1],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,?,?,?],unk> loc(#loc21) | |
%231 = torch.aten.batch_norm %230, %45, %32, %32, %45, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[40],f32>, !torch.vtensor<[40],f32>, !torch.vtensor<[40],f32>, !torch.vtensor<[40],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,?,?,?],unk> loc(#loc22) | |
%232 = torch.aten.add.Tensor %231, %191, %int1 : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[?,?,?,?],unk>, !torch.int -> !torch.vtensor<[?,?,?,?],unk> loc(#loc33) | |
%233 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%234 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%235 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%236 = torch.aten.conv2d %232, %53, %none, %233, %234, %235, %int1 : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[240,40,1,1],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,240,?,?],unk> loc(#loc21) | |
%237 = torch.aten.batch_norm %236, %51, %47, %47, %51, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,240,?,?],unk>, !torch.vtensor<[240],f32>, !torch.vtensor<[240],f32>, !torch.vtensor<[240],f32>, !torch.vtensor<[240],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,240,?,?],unk> loc(#loc22) | |
%238 = torch.copy.to_tensor %237 : !torch.tensor<[?,240,?,?],unk> loc(#loc22) | |
%239 = torch.operator "aten.hardswish_"(%238) : (!torch.tensor<[?,240,?,?],unk>) -> !torch.tensor loc(#loc34) | |
%240 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%241 = torch.prim.ListConstruct %int2, %int2 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%242 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%243 = torch.copy.to_vtensor %239 : !torch.vtensor loc(#loc21) | |
%244 = torch.aten.conv2d %243, %52, %none, %240, %241, %242, %int240 : !torch.vtensor, !torch.vtensor<[240,1,5,5],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,?,?,?],unk> loc(#loc21) | |
%245 = torch.aten.batch_norm %244, %51, %47, %47, %51, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[240],f32>, !torch.vtensor<[240],f32>, !torch.vtensor<[240],f32>, !torch.vtensor<[240],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,?,?,?],unk> loc(#loc22) | |
%246 = torch.copy.to_tensor %245 : !torch.tensor<[?,?,?,?],unk> loc(#loc22) | |
%247 = torch.operator "aten.hardswish_"(%246) : (!torch.tensor<[?,?,?,?],unk>) -> !torch.tensor loc(#loc34) | |
%248 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc24) | |
%249 = torch.copy.to_vtensor %247 : !torch.vtensor loc(#loc35) | |
%250 = torch.aten.dim %249 : !torch.vtensor -> !torch.int loc(#loc35) | |
%251 = torch.aten.gt.int %250, %int2 : !torch.int, !torch.int -> !torch.bool loc(#loc35) | |
torch.prim.If %251 -> () { | |
torch.prim.If.yield loc(#loc36) | |
} else { | |
torch.prim.RaiseException %str_0, %none : !torch.str, !torch.none loc(#loc36) | |
torch.prim.If.yield loc(#loc36) | |
} loc(#loc36) | |
%252 = torch.copy.to_vtensor %247 : !torch.vtensor loc(#loc25) | |
%253 = torch.aten.adaptive_avg_pool2d %252, %248 : !torch.vtensor, !torch.list<!torch.int> -> !torch.vtensor loc(#loc25) | |
%254 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc26) | |
%255 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc26) | |
%256 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc26) | |
%257 = torch.aten.conv2d %253, %50, %49, %254, %255, %256, %int1 : !torch.vtensor, !torch.vtensor<[64,240,1,1],f32>, !torch.vtensor<[64],f32>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,?,?,?],unk> loc(#loc27) | |
%258 = torch.aten.relu %257 : !torch.vtensor<[?,?,?,?],unk> -> !torch.vtensor<[?,?,?,?],unk> loc(#loc28) | |
%259 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc29) | |
%260 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc29) | |
%261 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc29) | |
%262 = torch.aten.conv2d %258, %48, %47, %259, %260, %261, %int1 : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[240,64,1,1],f32>, !torch.vtensor<[240],f32>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,240,?,?],unk> loc(#loc30) | |
%263 = torch.copy.to_tensor %262 : !torch.tensor<[?,240,?,?],unk> loc(#loc30) | |
%264 = torch.operator "aten.hardsigmoid"(%263) : (!torch.tensor<[?,240,?,?],unk>) -> !torch.tensor loc(#loc31) | |
%265 = torch.copy.to_vtensor %264 : !torch.vtensor loc(#loc32) | |
%266 = torch.copy.to_vtensor %247 : !torch.vtensor loc(#loc32) | |
%267 = torch.aten.mul.Tensor %265, %266 : !torch.vtensor, !torch.vtensor -> !torch.vtensor loc(#loc32) | |
%268 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%269 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%270 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%271 = torch.aten.conv2d %267, %46, %none, %268, %269, %270, %int1 : !torch.vtensor, !torch.vtensor<[40,240,1,1],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,?,?,?],unk> loc(#loc21) | |
%272 = torch.aten.batch_norm %271, %45, %32, %32, %45, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[40],f32>, !torch.vtensor<[40],f32>, !torch.vtensor<[40],f32>, !torch.vtensor<[40],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,?,?,?],unk> loc(#loc22) | |
%273 = torch.aten.add.Tensor %272, %232, %int1 : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[?,?,?,?],unk>, !torch.int -> !torch.vtensor<[?,?,?,?],unk> loc(#loc33) | |
%274 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%275 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%276 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%277 = torch.aten.conv2d %273, %44, %none, %274, %275, %276, %int1 : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[120,40,1,1],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,120,?,?],unk> loc(#loc21) | |
%278 = torch.aten.batch_norm %277, %42, %38, %38, %42, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,120,?,?],unk>, !torch.vtensor<[120],f32>, !torch.vtensor<[120],f32>, !torch.vtensor<[120],f32>, !torch.vtensor<[120],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,120,?,?],unk> loc(#loc22) | |
%279 = torch.copy.to_tensor %278 : !torch.tensor<[?,120,?,?],unk> loc(#loc22) | |
%280 = torch.operator "aten.hardswish_"(%279) : (!torch.tensor<[?,120,?,?],unk>) -> !torch.tensor loc(#loc34) | |
%281 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%282 = torch.prim.ListConstruct %int2, %int2 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%283 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%284 = torch.copy.to_vtensor %280 : !torch.vtensor loc(#loc21) | |
%285 = torch.aten.conv2d %284, %43, %none, %281, %282, %283, %int120 : !torch.vtensor, !torch.vtensor<[120,1,5,5],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,?,?,?],unk> loc(#loc21) | |
%286 = torch.aten.batch_norm %285, %42, %38, %38, %42, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[120],f32>, !torch.vtensor<[120],f32>, !torch.vtensor<[120],f32>, !torch.vtensor<[120],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,?,?,?],unk> loc(#loc22) | |
%287 = torch.copy.to_tensor %286 : !torch.tensor<[?,?,?,?],unk> loc(#loc22) | |
%288 = torch.operator "aten.hardswish_"(%287) : (!torch.tensor<[?,?,?,?],unk>) -> !torch.tensor loc(#loc34) | |
%289 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc24) | |
%290 = torch.copy.to_vtensor %288 : !torch.vtensor loc(#loc35) | |
%291 = torch.aten.dim %290 : !torch.vtensor -> !torch.int loc(#loc35) | |
%292 = torch.aten.gt.int %291, %int2 : !torch.int, !torch.int -> !torch.bool loc(#loc35) | |
torch.prim.If %292 -> () { | |
torch.prim.If.yield loc(#loc36) | |
} else { | |
torch.prim.RaiseException %str_0, %none : !torch.str, !torch.none loc(#loc36) | |
torch.prim.If.yield loc(#loc36) | |
} loc(#loc36) | |
%293 = torch.copy.to_vtensor %288 : !torch.vtensor loc(#loc25) | |
%294 = torch.aten.adaptive_avg_pool2d %293, %289 : !torch.vtensor, !torch.list<!torch.int> -> !torch.vtensor loc(#loc25) | |
%295 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc26) | |
%296 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc26) | |
%297 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc26) | |
%298 = torch.aten.conv2d %294, %41, %40, %295, %296, %297, %int1 : !torch.vtensor, !torch.vtensor<[32,120,1,1],f32>, !torch.vtensor<[32],f32>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,?,?,?],unk> loc(#loc27) | |
%299 = torch.aten.relu %298 : !torch.vtensor<[?,?,?,?],unk> -> !torch.vtensor<[?,?,?,?],unk> loc(#loc28) | |
%300 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc29) | |
%301 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc29) | |
%302 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc29) | |
%303 = torch.aten.conv2d %299, %39, %38, %300, %301, %302, %int1 : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[120,32,1,1],f32>, !torch.vtensor<[120],f32>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,120,?,?],unk> loc(#loc30) | |
%304 = torch.copy.to_tensor %303 : !torch.tensor<[?,120,?,?],unk> loc(#loc30) | |
%305 = torch.operator "aten.hardsigmoid"(%304) : (!torch.tensor<[?,120,?,?],unk>) -> !torch.tensor loc(#loc31) | |
%306 = torch.copy.to_vtensor %305 : !torch.vtensor loc(#loc32) | |
%307 = torch.copy.to_vtensor %288 : !torch.vtensor loc(#loc32) | |
%308 = torch.aten.mul.Tensor %306, %307 : !torch.vtensor, !torch.vtensor -> !torch.vtensor loc(#loc32) | |
%309 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%310 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%311 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%312 = torch.aten.conv2d %308, %37, %none, %309, %310, %311, %int1 : !torch.vtensor, !torch.vtensor<[48,120,1,1],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,?,?,?],unk> loc(#loc21) | |
%313 = torch.aten.batch_norm %312, %29, %28, %28, %29, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[48],f32>, !torch.vtensor<[48],f32>, !torch.vtensor<[48],f32>, !torch.vtensor<[48],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,?,?,?],unk> loc(#loc22) | |
%314 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%315 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%316 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%317 = torch.aten.conv2d %313, %36, %none, %314, %315, %316, %int1 : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[144,48,1,1],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,144,?,?],unk> loc(#loc21) | |
%318 = torch.aten.batch_norm %317, %34, %11, %11, %34, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,144,?,?],unk>, !torch.vtensor<[144],f32>, !torch.vtensor<[144],f32>, !torch.vtensor<[144],f32>, !torch.vtensor<[144],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,144,?,?],unk> loc(#loc22) | |
%319 = torch.copy.to_tensor %318 : !torch.tensor<[?,144,?,?],unk> loc(#loc22) | |
%320 = torch.operator "aten.hardswish_"(%319) : (!torch.tensor<[?,144,?,?],unk>) -> !torch.tensor loc(#loc34) | |
%321 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%322 = torch.prim.ListConstruct %int2, %int2 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%323 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%324 = torch.copy.to_vtensor %320 : !torch.vtensor loc(#loc21) | |
%325 = torch.aten.conv2d %324, %35, %none, %321, %322, %323, %int144 : !torch.vtensor, !torch.vtensor<[144,1,5,5],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,?,?,?],unk> loc(#loc21) | |
%326 = torch.aten.batch_norm %325, %34, %11, %11, %34, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[144],f32>, !torch.vtensor<[144],f32>, !torch.vtensor<[144],f32>, !torch.vtensor<[144],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,?,?,?],unk> loc(#loc22) | |
%327 = torch.copy.to_tensor %326 : !torch.tensor<[?,?,?,?],unk> loc(#loc22) | |
%328 = torch.operator "aten.hardswish_"(%327) : (!torch.tensor<[?,?,?,?],unk>) -> !torch.tensor loc(#loc34) | |
%329 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc24) | |
%330 = torch.copy.to_vtensor %328 : !torch.vtensor loc(#loc35) | |
%331 = torch.aten.dim %330 : !torch.vtensor -> !torch.int loc(#loc35) | |
%332 = torch.aten.gt.int %331, %int2 : !torch.int, !torch.int -> !torch.bool loc(#loc35) | |
torch.prim.If %332 -> () { | |
torch.prim.If.yield loc(#loc36) | |
} else { | |
torch.prim.RaiseException %str_0, %none : !torch.str, !torch.none loc(#loc36) | |
torch.prim.If.yield loc(#loc36) | |
} loc(#loc36) | |
%333 = torch.copy.to_vtensor %328 : !torch.vtensor loc(#loc25) | |
%334 = torch.aten.adaptive_avg_pool2d %333, %329 : !torch.vtensor, !torch.list<!torch.int> -> !torch.vtensor loc(#loc25) | |
%335 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc26) | |
%336 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc26) | |
%337 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc26) | |
%338 = torch.aten.conv2d %334, %33, %32, %335, %336, %337, %int1 : !torch.vtensor, !torch.vtensor<[40,144,1,1],f32>, !torch.vtensor<[40],f32>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,?,?,?],unk> loc(#loc27) | |
%339 = torch.aten.relu %338 : !torch.vtensor<[?,?,?,?],unk> -> !torch.vtensor<[?,?,?,?],unk> loc(#loc28) | |
%340 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc29) | |
%341 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc29) | |
%342 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc29) | |
%343 = torch.aten.conv2d %339, %31, %11, %340, %341, %342, %int1 : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[144,40,1,1],f32>, !torch.vtensor<[144],f32>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,144,?,?],unk> loc(#loc30) | |
%344 = torch.copy.to_tensor %343 : !torch.tensor<[?,144,?,?],unk> loc(#loc30) | |
%345 = torch.operator "aten.hardsigmoid"(%344) : (!torch.tensor<[?,144,?,?],unk>) -> !torch.tensor loc(#loc31) | |
%346 = torch.copy.to_vtensor %345 : !torch.vtensor loc(#loc32) | |
%347 = torch.copy.to_vtensor %328 : !torch.vtensor loc(#loc32) | |
%348 = torch.aten.mul.Tensor %346, %347 : !torch.vtensor, !torch.vtensor -> !torch.vtensor loc(#loc32) | |
%349 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%350 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%351 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%352 = torch.aten.conv2d %348, %30, %none, %349, %350, %351, %int1 : !torch.vtensor, !torch.vtensor<[48,144,1,1],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,?,?,?],unk> loc(#loc21) | |
%353 = torch.aten.batch_norm %352, %29, %28, %28, %29, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[48],f32>, !torch.vtensor<[48],f32>, !torch.vtensor<[48],f32>, !torch.vtensor<[48],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,?,?,?],unk> loc(#loc22) | |
%354 = torch.aten.add.Tensor %353, %313, %int1 : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[?,?,?,?],unk>, !torch.int -> !torch.vtensor<[?,?,?,?],unk> loc(#loc33) | |
%355 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%356 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%357 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%358 = torch.aten.conv2d %354, %27, %none, %355, %356, %357, %int1 : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[288,48,1,1],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,288,?,?],unk> loc(#loc21) | |
%359 = torch.aten.batch_norm %358, %25, %21, %21, %25, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,288,?,?],unk>, !torch.vtensor<[288],f32>, !torch.vtensor<[288],f32>, !torch.vtensor<[288],f32>, !torch.vtensor<[288],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,288,?,?],unk> loc(#loc22) | |
%360 = torch.copy.to_tensor %359 : !torch.tensor<[?,288,?,?],unk> loc(#loc22) | |
%361 = torch.operator "aten.hardswish_"(%360) : (!torch.tensor<[?,288,?,?],unk>) -> !torch.tensor loc(#loc34) | |
%362 = torch.prim.ListConstruct %int2, %int2 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%363 = torch.prim.ListConstruct %int2, %int2 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%364 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%365 = torch.copy.to_vtensor %361 : !torch.vtensor loc(#loc21) | |
%366 = torch.aten.conv2d %365, %26, %none, %362, %363, %364, %int288 : !torch.vtensor, !torch.vtensor<[288,1,5,5],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,?,?,?],unk> loc(#loc21) | |
%367 = torch.aten.batch_norm %366, %25, %21, %21, %25, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[288],f32>, !torch.vtensor<[288],f32>, !torch.vtensor<[288],f32>, !torch.vtensor<[288],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,?,?,?],unk> loc(#loc22) | |
%368 = torch.copy.to_tensor %367 : !torch.tensor<[?,?,?,?],unk> loc(#loc22) | |
%369 = torch.operator "aten.hardswish_"(%368) : (!torch.tensor<[?,?,?,?],unk>) -> !torch.tensor loc(#loc34) | |
%370 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc24) | |
%371 = torch.copy.to_vtensor %369 : !torch.vtensor loc(#loc35) | |
%372 = torch.aten.dim %371 : !torch.vtensor -> !torch.int loc(#loc35) | |
%373 = torch.aten.gt.int %372, %int2 : !torch.int, !torch.int -> !torch.bool loc(#loc35) | |
torch.prim.If %373 -> () { | |
torch.prim.If.yield loc(#loc36) | |
} else { | |
torch.prim.RaiseException %str_0, %none : !torch.str, !torch.none loc(#loc36) | |
torch.prim.If.yield loc(#loc36) | |
} loc(#loc36) | |
%374 = torch.copy.to_vtensor %369 : !torch.vtensor loc(#loc25) | |
%375 = torch.aten.adaptive_avg_pool2d %374, %370 : !torch.vtensor, !torch.list<!torch.int> -> !torch.vtensor loc(#loc25) | |
%376 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc26) | |
%377 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc26) | |
%378 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc26) | |
%379 = torch.aten.conv2d %375, %24, %23, %376, %377, %378, %int1 : !torch.vtensor, !torch.vtensor<[72,288,1,1],f32>, !torch.vtensor<[72],f32>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,?,?,?],unk> loc(#loc27) | |
%380 = torch.aten.relu %379 : !torch.vtensor<[?,?,?,?],unk> -> !torch.vtensor<[?,?,?,?],unk> loc(#loc28) | |
%381 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc29) | |
%382 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc29) | |
%383 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc29) | |
%384 = torch.aten.conv2d %380, %22, %21, %381, %382, %383, %int1 : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[288,72,1,1],f32>, !torch.vtensor<[288],f32>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,288,?,?],unk> loc(#loc30) | |
%385 = torch.copy.to_tensor %384 : !torch.tensor<[?,288,?,?],unk> loc(#loc30) | |
%386 = torch.operator "aten.hardsigmoid"(%385) : (!torch.tensor<[?,288,?,?],unk>) -> !torch.tensor loc(#loc31) | |
%387 = torch.copy.to_vtensor %386 : !torch.vtensor loc(#loc32) | |
%388 = torch.copy.to_vtensor %369 : !torch.vtensor loc(#loc32) | |
%389 = torch.aten.mul.Tensor %387, %388 : !torch.vtensor, !torch.vtensor -> !torch.vtensor loc(#loc32) | |
%390 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%391 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%392 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%393 = torch.aten.conv2d %389, %20, %none, %390, %391, %392, %int1 : !torch.vtensor, !torch.vtensor<[96,288,1,1],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,?,?,?],unk> loc(#loc21) | |
%394 = torch.aten.batch_norm %393, %8, %7, %7, %8, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[96],f32>, !torch.vtensor<[96],f32>, !torch.vtensor<[96],f32>, !torch.vtensor<[96],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,?,?,?],unk> loc(#loc22) | |
%395 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%396 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%397 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%398 = torch.aten.conv2d %394, %19, %none, %395, %396, %397, %int1 : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[576,96,1,1],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,576,?,?],unk> loc(#loc21) | |
%399 = torch.aten.batch_norm %398, %5, %4, %4, %5, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,576,?,?],unk>, !torch.vtensor<[576],f32>, !torch.vtensor<[576],f32>, !torch.vtensor<[576],f32>, !torch.vtensor<[576],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,576,?,?],unk> loc(#loc22) | |
%400 = torch.copy.to_tensor %399 : !torch.tensor<[?,576,?,?],unk> loc(#loc22) | |
%401 = torch.operator "aten.hardswish_"(%400) : (!torch.tensor<[?,576,?,?],unk>) -> !torch.tensor loc(#loc34) | |
%402 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%403 = torch.prim.ListConstruct %int2, %int2 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%404 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%405 = torch.copy.to_vtensor %401 : !torch.vtensor loc(#loc21) | |
%406 = torch.aten.conv2d %405, %18, %none, %402, %403, %404, %int576 : !torch.vtensor, !torch.vtensor<[576,1,5,5],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,?,?,?],unk> loc(#loc21) | |
%407 = torch.aten.batch_norm %406, %5, %4, %4, %5, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[576],f32>, !torch.vtensor<[576],f32>, !torch.vtensor<[576],f32>, !torch.vtensor<[576],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,?,?,?],unk> loc(#loc22) | |
%408 = torch.copy.to_tensor %407 : !torch.tensor<[?,?,?,?],unk> loc(#loc22) | |
%409 = torch.operator "aten.hardswish_"(%408) : (!torch.tensor<[?,?,?,?],unk>) -> !torch.tensor loc(#loc34) | |
%410 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc24) | |
%411 = torch.copy.to_vtensor %409 : !torch.vtensor loc(#loc35) | |
%412 = torch.aten.dim %411 : !torch.vtensor -> !torch.int loc(#loc35) | |
%413 = torch.aten.gt.int %412, %int2 : !torch.int, !torch.int -> !torch.bool loc(#loc35) | |
torch.prim.If %413 -> () { | |
torch.prim.If.yield loc(#loc36) | |
} else { | |
torch.prim.RaiseException %str_0, %none : !torch.str, !torch.none loc(#loc36) | |
torch.prim.If.yield loc(#loc36) | |
} loc(#loc36) | |
%414 = torch.copy.to_vtensor %409 : !torch.vtensor loc(#loc25) | |
%415 = torch.aten.adaptive_avg_pool2d %414, %410 : !torch.vtensor, !torch.list<!torch.int> -> !torch.vtensor loc(#loc25) | |
%416 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc26) | |
%417 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc26) | |
%418 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc26) | |
%419 = torch.aten.conv2d %415, %17, %11, %416, %417, %418, %int1 : !torch.vtensor, !torch.vtensor<[144,576,1,1],f32>, !torch.vtensor<[144],f32>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,?,?,?],unk> loc(#loc27) | |
%420 = torch.aten.relu %419 : !torch.vtensor<[?,?,?,?],unk> -> !torch.vtensor<[?,?,?,?],unk> loc(#loc28) | |
%421 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc29) | |
%422 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc29) | |
%423 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc29) | |
%424 = torch.aten.conv2d %420, %16, %4, %421, %422, %423, %int1 : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[576,144,1,1],f32>, !torch.vtensor<[576],f32>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,576,?,?],unk> loc(#loc30) | |
%425 = torch.copy.to_tensor %424 : !torch.tensor<[?,576,?,?],unk> loc(#loc30) | |
%426 = torch.operator "aten.hardsigmoid"(%425) : (!torch.tensor<[?,576,?,?],unk>) -> !torch.tensor loc(#loc31) | |
%427 = torch.copy.to_vtensor %426 : !torch.vtensor loc(#loc32) | |
%428 = torch.copy.to_vtensor %409 : !torch.vtensor loc(#loc32) | |
%429 = torch.aten.mul.Tensor %427, %428 : !torch.vtensor, !torch.vtensor -> !torch.vtensor loc(#loc32) | |
%430 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%431 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%432 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%433 = torch.aten.conv2d %429, %15, %none, %430, %431, %432, %int1 : !torch.vtensor, !torch.vtensor<[96,576,1,1],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,?,?,?],unk> loc(#loc21) | |
%434 = torch.aten.batch_norm %433, %8, %7, %7, %8, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[96],f32>, !torch.vtensor<[96],f32>, !torch.vtensor<[96],f32>, !torch.vtensor<[96],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,?,?,?],unk> loc(#loc22) | |
%435 = torch.aten.add.Tensor %434, %394, %int1 : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[?,?,?,?],unk>, !torch.int -> !torch.vtensor<[?,?,?,?],unk> loc(#loc33) | |
%436 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%437 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%438 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%439 = torch.aten.conv2d %435, %14, %none, %436, %437, %438, %int1 : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[576,96,1,1],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,576,?,?],unk> loc(#loc21) | |
%440 = torch.aten.batch_norm %439, %5, %4, %4, %5, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,576,?,?],unk>, !torch.vtensor<[576],f32>, !torch.vtensor<[576],f32>, !torch.vtensor<[576],f32>, !torch.vtensor<[576],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,576,?,?],unk> loc(#loc22) | |
%441 = torch.copy.to_tensor %440 : !torch.tensor<[?,576,?,?],unk> loc(#loc22) | |
%442 = torch.operator "aten.hardswish_"(%441) : (!torch.tensor<[?,576,?,?],unk>) -> !torch.tensor loc(#loc34) | |
%443 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%444 = torch.prim.ListConstruct %int2, %int2 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%445 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%446 = torch.copy.to_vtensor %442 : !torch.vtensor loc(#loc21) | |
%447 = torch.aten.conv2d %446, %13, %none, %443, %444, %445, %int576 : !torch.vtensor, !torch.vtensor<[576,1,5,5],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,?,?,?],unk> loc(#loc21) | |
%448 = torch.aten.batch_norm %447, %5, %4, %4, %5, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[576],f32>, !torch.vtensor<[576],f32>, !torch.vtensor<[576],f32>, !torch.vtensor<[576],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,?,?,?],unk> loc(#loc22) | |
%449 = torch.copy.to_tensor %448 : !torch.tensor<[?,?,?,?],unk> loc(#loc22) | |
%450 = torch.operator "aten.hardswish_"(%449) : (!torch.tensor<[?,?,?,?],unk>) -> !torch.tensor loc(#loc34) | |
%451 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc24) | |
%452 = torch.copy.to_vtensor %450 : !torch.vtensor loc(#loc35) | |
%453 = torch.aten.dim %452 : !torch.vtensor -> !torch.int loc(#loc35) | |
%454 = torch.aten.gt.int %453, %int2 : !torch.int, !torch.int -> !torch.bool loc(#loc35) | |
torch.prim.If %454 -> () { | |
torch.prim.If.yield loc(#loc36) | |
} else { | |
torch.prim.RaiseException %str_0, %none : !torch.str, !torch.none loc(#loc36) | |
torch.prim.If.yield loc(#loc36) | |
} loc(#loc36) | |
%455 = torch.copy.to_vtensor %450 : !torch.vtensor loc(#loc25) | |
%456 = torch.aten.adaptive_avg_pool2d %455, %451 : !torch.vtensor, !torch.list<!torch.int> -> !torch.vtensor loc(#loc25) | |
%457 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc26) | |
%458 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc26) | |
%459 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc26) | |
%460 = torch.aten.conv2d %456, %12, %11, %457, %458, %459, %int1 : !torch.vtensor, !torch.vtensor<[144,576,1,1],f32>, !torch.vtensor<[144],f32>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,?,?,?],unk> loc(#loc27) | |
%461 = torch.aten.relu %460 : !torch.vtensor<[?,?,?,?],unk> -> !torch.vtensor<[?,?,?,?],unk> loc(#loc28) | |
%462 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc29) | |
%463 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc29) | |
%464 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc29) | |
%465 = torch.aten.conv2d %461, %10, %4, %462, %463, %464, %int1 : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[576,144,1,1],f32>, !torch.vtensor<[576],f32>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,576,?,?],unk> loc(#loc30) | |
%466 = torch.copy.to_tensor %465 : !torch.tensor<[?,576,?,?],unk> loc(#loc30) | |
%467 = torch.operator "aten.hardsigmoid"(%466) : (!torch.tensor<[?,576,?,?],unk>) -> !torch.tensor loc(#loc31) | |
%468 = torch.copy.to_vtensor %467 : !torch.vtensor loc(#loc32) | |
%469 = torch.copy.to_vtensor %450 : !torch.vtensor loc(#loc32) | |
%470 = torch.aten.mul.Tensor %468, %469 : !torch.vtensor, !torch.vtensor -> !torch.vtensor loc(#loc32) | |
%471 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%472 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%473 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc20) | |
%474 = torch.aten.conv2d %470, %9, %none, %471, %472, %473, %int1 : !torch.vtensor, !torch.vtensor<[96,576,1,1],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,?,?,?],unk> loc(#loc21) | |
%475 = torch.aten.batch_norm %474, %8, %7, %7, %8, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[96],f32>, !torch.vtensor<[96],f32>, !torch.vtensor<[96],f32>, !torch.vtensor<[96],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,?,?,?],unk> loc(#loc22) | |
%476 = torch.aten.add.Tensor %475, %435, %int1 : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[?,?,?,?],unk>, !torch.int -> !torch.vtensor<[?,?,?,?],unk> loc(#loc33) | |
%477 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc16) | |
%478 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc16) | |
%479 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc16) | |
%480 = torch.aten.conv2d %476, %6, %none, %477, %478, %479, %int1 : !torch.vtensor<[?,?,?,?],unk>, !torch.vtensor<[576,96,1,1],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,576,?,?],unk> loc(#loc17) | |
%481 = torch.aten.batch_norm %480, %5, %4, %4, %5, %false, %float1.000000e-02, %float1.000000e-03, %true : !torch.vtensor<[?,576,?,?],unk>, !torch.vtensor<[576],f32>, !torch.vtensor<[576],f32>, !torch.vtensor<[576],f32>, !torch.vtensor<[576],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,576,?,?],unk> loc(#loc18) | |
%482 = torch.copy.to_tensor %481 : !torch.tensor<[?,576,?,?],unk> loc(#loc18) | |
%483 = torch.operator "aten.hardswish_"(%482) : (!torch.tensor<[?,576,?,?],unk>) -> !torch.tensor loc(#loc19) | |
%484 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int> loc(#loc37) | |
%485 = torch.copy.to_vtensor %483 : !torch.vtensor loc(#loc38) | |
%486 = torch.aten.dim %485 : !torch.vtensor -> !torch.int loc(#loc38) | |
%487 = torch.aten.gt.int %486, %int2 : !torch.int, !torch.int -> !torch.bool loc(#loc38) | |
torch.prim.If %487 -> () { | |
torch.prim.If.yield loc(#loc39) | |
} else { | |
torch.prim.RaiseException %str_0, %none : !torch.str, !torch.none loc(#loc39) | |
torch.prim.If.yield loc(#loc39) | |
} loc(#loc39) | |
%488 = torch.copy.to_vtensor %483 : !torch.vtensor loc(#loc40) | |
%489 = torch.aten.adaptive_avg_pool2d %488, %484 : !torch.vtensor, !torch.list<!torch.int> -> !torch.vtensor loc(#loc40) | |
%490 = torch.aten.flatten.using_ints %489, %int1, %int-1 : !torch.vtensor, !torch.int, !torch.int -> !torch.vtensor loc(#loc41) | |
%491 = torch.aten.linear %490, %3, %2 : !torch.vtensor, !torch.vtensor<[1024,576],f32>, !torch.vtensor<[1024],f32> -> !torch.vtensor loc(#loc42) | |
%492 = torch.copy.to_tensor %491 : !torch.tensor loc(#loc42) | |
%493 = torch.operator "aten.hardswish_"(%492) : (!torch.tensor) -> !torch.tensor loc(#loc43) | |
%494 = torch.operator "aten.lt.float"(%float2.000000e-01, %float0.000000e00) : (!torch.float, !torch.float) -> !torch.bool loc(#loc44) | |
%495 = torch.prim.If %494 -> (!torch.bool) { | |
torch.prim.If.yield %true : !torch.bool loc(#loc44) | |
} else { | |
%499 = torch.operator "aten.gt.float"(%float2.000000e-01, %float1.000000e00) : (!torch.float, !torch.float) -> !torch.bool loc(#loc45) | |
torch.prim.If.yield %499 : !torch.bool loc(#loc44) | |
} loc(#loc44) | |
torch.prim.If %495 -> () { | |
%499 = torch.aten.format(%str, %float2.000000e-01) : !torch.str, !torch.float -> !torch.str loc(#loc2) | |
torch.prim.RaiseException %499, %none : !torch.str, !torch.none loc(#loc47) | |
torch.prim.If.yield loc(#loc46) | |
} else { | |
torch.prim.If.yield loc(#loc46) | |
} loc(#loc46) | |
%496 = torch.operator "aten.dropout_"(%493, %float2.000000e-01, %false) : (!torch.tensor, !torch.float, !torch.bool) -> !torch.tensor loc(#loc48) | |
%497 = torch.copy.to_vtensor %496 : !torch.vtensor loc(#loc42) | |
%498 = torch.aten.linear %497, %1, %0 : !torch.vtensor, !torch.vtensor<[1000,1024],f32>, !torch.vtensor<[1000],f32> -> !torch.vtensor loc(#loc42) | |
return %498 : !torch.vtensor loc(#loc0) | |
} loc(#loc0) | |
} loc(#loc0) | |
#loc1 = loc(callsite(callsite(callsite(callsite(callsite(callsite(unknown at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/batchnorm.py":135:8) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":224:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc2 = loc(callsite(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/functional.py":1278:25 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/dropout.py":58:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":229:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc3 = loc(callsite(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/functional.py":1277:11 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/dropout.py":58:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":229:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc4 = loc(callsite(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/functional.py":1277:22 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/dropout.py":58:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":229:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc5 = loc(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/dropout.py":58:32 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":229:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc6 = loc(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":227:29 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc7 = loc(callsite(callsite(callsite(callsite(callsite(callsite(callsite(callsite(callsite(unknown at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/pooling.py":1179:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/ops/misc.py":155:16) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/ops/misc.py":162:16) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":125:17) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":224:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc8 = loc(callsite(callsite(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/conv.py":443:45 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/conv.py":447:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":224:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc9 = loc(callsite(callsite(callsite(callsite(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/conv.py":444:53 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/conv.py":447:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":125:17) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":224:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc10 = loc(callsite(callsite(callsite(callsite(callsite(unknown at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":224:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc11 = loc(callsite(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/batchnorm.py":179:12 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":224:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc12 = loc(callsite(callsite(callsite(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/functional.py":2383:22 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/functional.py":2419:8) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/batchnorm.py":168:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":224:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc13 = loc(callsite(callsite(unknown at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc14 = loc(callsite(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/batchnorm.py":159:26 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":224:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc15 = loc(callsite(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/batchnorm.py":161:27 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":224:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc16 = loc(callsite(callsite(callsite(callsite(callsite(callsite(unknown at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/conv.py":447:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":224:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc17 = loc(callsite(callsite(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/conv.py":443:15 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/conv.py":447:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":224:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc18 = loc(callsite(callsite(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/functional.py":2421:11 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/batchnorm.py":168:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":224:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc19 = loc(callsite(callsite(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/functional.py":2074:15 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/activation.py":475:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":224:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc20 = loc(callsite(callsite(callsite(callsite(callsite(callsite(callsite(callsite(unknown at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/conv.py":447:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":125:17) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":224:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc21 = loc(callsite(callsite(callsite(callsite(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/conv.py":443:15 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/conv.py":447:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":125:17) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":224:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc22 = loc(callsite(callsite(callsite(callsite(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/functional.py":2421:11 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/batchnorm.py":168:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":125:17) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":224:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc23 = loc(callsite(callsite(callsite(callsite(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/functional.py":1440:17 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/activation.py":98:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":125:17) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":224:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc24 = loc(callsite(callsite(callsite(callsite(callsite(callsite(callsite(callsite(unknown at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/ops/misc.py":155:16) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/ops/misc.py":162:16) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":125:17) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":224:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc25 = loc(callsite(callsite(callsite(callsite(callsite(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/functional.py":1241:11 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/pooling.py":1179:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/ops/misc.py":155:16) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/ops/misc.py":162:16) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":125:17) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":224:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc26 = loc(callsite(callsite(callsite(callsite(callsite(callsite(callsite(callsite(callsite(unknown at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/conv.py":447:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/ops/misc.py":156:16) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/ops/misc.py":162:16) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":125:17) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":224:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc27 = loc(callsite(callsite(callsite(callsite(callsite(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/conv.py":443:15 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/conv.py":447:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/ops/misc.py":156:16) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/ops/misc.py":162:16) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":125:17) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":224:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc28 = loc(callsite(callsite(callsite(callsite(callsite(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/functional.py":1442:17 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/activation.py":98:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/ops/misc.py":157:16) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/ops/misc.py":162:16) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":125:17) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":224:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc29 = loc(callsite(callsite(callsite(callsite(callsite(callsite(callsite(callsite(callsite(unknown at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/conv.py":447:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/ops/misc.py":158:16) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/ops/misc.py":162:16) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":125:17) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":224:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc30 = loc(callsite(callsite(callsite(callsite(callsite(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/conv.py":443:15 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/conv.py":447:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/ops/misc.py":158:16) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/ops/misc.py":162:16) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":125:17) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":224:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc31 = loc(callsite(callsite(callsite(callsite(callsite(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/functional.py":1967:11 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/activation.py":332:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/ops/misc.py":159:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/ops/misc.py":162:16) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":125:17) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":224:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc32 = loc(callsite(callsite(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/ops/misc.py":163:15 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":125:17) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":224:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc33 = loc(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":127:12 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":224:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc34 = loc(callsite(callsite(callsite(callsite(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/functional.py":2074:15 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/activation.py":475:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":125:17) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":224:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc35 = loc(callsite(callsite(callsite(callsite(callsite(callsite(callsite(callsite(callsite("<string>":5:9 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/pooling.py":1179:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/ops/misc.py":155:16) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/ops/misc.py":162:16) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":125:17) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":224:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc36 = loc(callsite(callsite(callsite(callsite(callsite(callsite(callsite(callsite(callsite("<string>":5:2 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/pooling.py":1179:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/ops/misc.py":155:16) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/ops/misc.py":162:16) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":125:17) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":224:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc37 = loc(callsite(callsite(callsite(unknown at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":226:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc38 = loc(callsite(callsite(callsite(callsite("<string>":5:9 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/pooling.py":1179:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":226:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc39 = loc(callsite(callsite(callsite(callsite("<string>":5:2 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/pooling.py":1179:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":226:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc40 = loc(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/functional.py":1241:11 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/pooling.py":1179:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":226:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc41 = loc(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":227:12 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc42 = loc(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/linear.py":103:15 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":229:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc43 = loc(callsite(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/functional.py":2074:15 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/activation.py":475:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":229:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc44 = loc(callsite(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/functional.py":1277:7 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/dropout.py":58:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":229:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc45 = loc(callsite(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/functional.py":1277:18 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/dropout.py":58:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":229:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc46 = loc(callsite(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/functional.py":1277:4 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/dropout.py":58:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":229:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc47 = loc(callsite(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/functional.py":1278:8 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/dropout.py":58:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":229:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) | |
#loc48 = loc(callsite(callsite(callsite(callsite(callsite("/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/functional.py":1279:11 at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/dropout.py":58:15) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torch/nn/modules/container.py":141:20) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":229:12) at "/home/prashant/torch-mlir/mlir_venv/lib/python3.9/site-packages/torchvision/models/mobilenetv3.py":234:15) at "/home/prashant/torch-mlir/e2e_testing/torchscript/vision_models.py":122:15)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment