Created
January 17, 2025 15:21
-
-
Save pashu123/80b390451b6fff90ce146b557c3b5a37 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
hal.executable public @prefill_bs1$async_dispatch_39 { | |
hal.executable.variant public @embedded_elf_x86_64 target(<"llvm-cpu", "embedded-elf-x86_64", {cpu = "znver4", cpu_features = "+prfchw,-cldemote,+avx,+aes,+sahf,+pclmul,-xop,+crc32,-amx-fp8,+xsaves,-avx512fp16,-usermsr,-sm4,-egpr,+sse4.1,+avx512ifma,+xsave,+sse4.2,-tsxldtrk,-sm3,-ptwrite,-widekl,-movrs,+invpcid,+64bit,+xsavec,-avx10.1-512,+avx512vpopcntdq,+cmov,-avx512vp2intersect,+avx512cd,+movbe,-avxvnniint8,-ccmp,-amx-int8,-kl,-avx10.1-256,+evex512,-avxvnni,-rtm,+adx,+avx2,-hreset,-movdiri,-serialize,-sha512,+vpclmulqdq,+avx512vl,-uintr,-cf,+clflushopt,-raoint,-cmpccxadd,+bmi,-amx-tile,+sse,-avx10.2-256,+gfni,-avxvnniint16,-amx-fp16,-zu,-ndd,+xsaveopt,+rdrnd,+avx512f,-amx-bf16,+avx512bf16,+avx512vnni,-push2pop2,+cx8,+avx512bw,+sse3,+pku,-nf,-amx-tf32,-amx-avx512,+fsgsbase,+clzero,+mwaitx,-lwp,+lzcnt,+sha,-movdir64b,-ppx,+wbnoinvd,-enqcmd,-amx-transpose,-avx10.2-512,-avxneconvert,-tbm,-pconfig,-amx-complex,+ssse3,+cx16,+bmi2,+fma,+popcnt,-avxifma,+f16c,+avx512bitalg,+rdpru,+clwb,+mmx,+sse2,+rdseed,+avx512vbmi2,-prefetchi,-amx-movrs,+rdpid,-fma4,+avx512vbmi,+shstk,+vaes,-waitpkg,-sgx,+fxsr,+avx512dq,+sse4a", data_layout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-i128:128-f80:128-n8:16:32:64-S128", native_vector_size = 64 : i64, target_triple = "x86_64-unknown-unknown-eabi-elf"}>) { | |
hal.executable.export public @prefill_bs1$async_dispatch_39_matmul_like_Dx2048x176x32_f16xf16xf32 ordinal(0) layout(#hal.pipeline.layout<constants = 3, bindings = [#hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) { | |
^bb0(%arg0: !hal.device, %arg1: index): | |
%x, %y, %z = flow.dispatch.workgroup_count_from_slice %arg1 | |
hal.return %x, %y, %z : index, index, index | |
} | |
builtin.module { | |
func.func @prefill_bs1$async_dispatch_39_matmul_like_Dx2048x176x32_f16xf16xf32() { | |
%c12976128 = arith.constant 12976128 : index | |
%c12255232 = arith.constant 12255232 : index | |
%cst = arith.constant 0.000000e+00 : f32 | |
%c200704000 = arith.constant 200704000 : index | |
%0 = hal.interface.constant.load layout(<constants = 3, bindings = [#hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) ordinal(0) : i32 | |
%1 = hal.interface.constant.load layout(<constants = 3, bindings = [#hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) ordinal(1) : i32 | |
%2 = hal.interface.constant.load layout(<constants = 3, bindings = [#hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) ordinal(2) : i32 | |
%3 = arith.index_castui %0 : i32 to index | |
%4 = arith.index_castui %1 : i32 to index | |
%5 = arith.index_castui %2 : i32 to index | |
%6:3 = util.assume.int | |
%3<umin = 202473856, umax = 568173952>, | |
%4<umin = 200835072, umax = 208961536>, | |
%5<umin = 32, umax = 2016, udiv = 32> | |
: index, index, index | |
%7 = hal.interface.binding.subspan layout(<constants = 3, bindings = [#hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) binding(0) alignment(64) offset(%c12255232) flags("ReadOnly|Indirect") : !flow.dispatch.tensor<readonly:tensor<2048x176xf16>> | |
%8 = hal.interface.binding.subspan layout(<constants = 3, bindings = [#hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) binding(0) alignment(64) offset(%c12976128) flags("ReadOnly|Indirect") : !flow.dispatch.tensor<readonly:tensor<2048x176x32xi8>> | |
%9 = flow.dispatch.workload.ordinal %6#2, 0 : index | |
%10 = hal.interface.binding.subspan layout(<constants = 3, bindings = [#hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) binding(0) alignment(64) offset(%6#0) flags("ReadOnly|Indirect") : !flow.dispatch.tensor<readonly:tensor<?x176x32xf16>>{%9} | |
%11 = hal.interface.binding.subspan layout(<constants = 3, bindings = [#hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) binding(0) alignment(64) offset(%6#1) flags("ReadOnly|Indirect") : !flow.dispatch.tensor<readonly:tensor<?x2048xf16>>{%9} | |
%12 = hal.interface.binding.subspan layout(<constants = 3, bindings = [#hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) binding(1) alignment(64) offset(%c200704000) flags(Indirect) : !flow.dispatch.tensor<writeonly:tensor<?x2048xf16>>{%9} | |
%13 = flow.dispatch.tensor.load %7, offsets = [0, 0], sizes = [2048, 176], strides = [1, 1] : !flow.dispatch.tensor<readonly:tensor<2048x176xf16>> -> tensor<2048x176xf16> | |
%14 = flow.dispatch.tensor.load %8, offsets = [0, 0, 0], sizes = [2048, 176, 32], strides = [1, 1, 1] : !flow.dispatch.tensor<readonly:tensor<2048x176x32xi8>> -> tensor<2048x176x32xi8> | |
%15 = flow.dispatch.tensor.load %10, offsets = [0, 0, 0], sizes = [%9, 176, 32], strides = [1, 1, 1] : !flow.dispatch.tensor<readonly:tensor<?x176x32xf16>>{%9} -> tensor<?x176x32xf16> | |
%16 = flow.dispatch.tensor.load %11, offsets = [0, 0], sizes = [%9, 2048], strides = [1, 1] : !flow.dispatch.tensor<readonly:tensor<?x2048xf16>>{%9} -> tensor<?x2048xf16> | |
%17 = tensor.empty(%9) : tensor<?x2048xf16> | |
%18 = tensor.empty(%9) : tensor<?x2048xf32> | |
%19 = tensor.empty() : tensor<2048x176x32xf16> | |
%20 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1)>, affine_map<(d0, d1, d2) -> (d0, d1, d2)>, affine_map<(d0, d1, d2) -> (d0, d1, d2)>], iterator_types = ["parallel", "parallel", "parallel"]} ins(%13, %14 : tensor<2048x176xf16>, tensor<2048x176x32xi8>) outs(%19 : tensor<2048x176x32xf16>) { | |
^bb0(%in: f16, %in_0: i8, %out: f16): | |
%24 = arith.extsi %in_0 : i8 to i32 | |
%25 = arith.sitofp %24 : i32 to f16 | |
%26 = arith.mulf %25, %in : f16 | |
linalg.yield %26 : f16 | |
} -> tensor<2048x176x32xf16> | |
%21 = linalg.fill ins(%cst : f32) outs(%18 : tensor<?x2048xf32>) -> tensor<?x2048xf32> | |
%22 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d2, d3)>, affine_map<(d0, d1, d2, d3) -> (d1, d2, d3)>, affine_map<(d0, d1, d2, d3) -> (d0, d1)>], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%15, %20 : tensor<?x176x32xf16>, tensor<2048x176x32xf16>) outs(%21 : tensor<?x2048xf32>) { | |
^bb0(%in: f16, %in_0: f16, %out: f32): | |
%24 = arith.mulf %in, %in_0 : f16 | |
%25 = arith.extf %24 : f16 to f32 | |
%26 = arith.addf %25, %out : f32 | |
linalg.yield %26 : f32 | |
} -> tensor<?x2048xf32> | |
%23 = linalg.generic {indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>], iterator_types = ["parallel", "parallel"]} ins(%16, %22 : tensor<?x2048xf16>, tensor<?x2048xf32>) outs(%17 : tensor<?x2048xf16>) { | |
^bb0(%in: f16, %in_0: f32, %out: f16): | |
%24 = arith.truncf %in_0 : f32 to f16 | |
%25 = arith.addf %in, %24 : f16 | |
linalg.yield %25 : f16 | |
} -> tensor<?x2048xf16> | |
flow.dispatch.tensor.store %23, %12, offsets = [0, 0], sizes = [%9, 2048], strides = [1, 1] : tensor<?x2048xf16> -> !flow.dispatch.tensor<writeonly:tensor<?x2048xf16>>{%9} | |
return | |
} | |
} | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment