Created
February 3, 2025 12:19
-
-
Save pashu123/8823f629a1784f11600bbd332fabc1fe to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#map = affine_map<(d0, d1, d2, d3) -> (d0, d1, d3)> | |
#map1 = affine_map<(d0, d1, d2, d3) -> (d0, d2, d3)> | |
#map2 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)> | |
#map3 = affine_map<(d0, d1, d2) -> (d0, d1, d2)> | |
module { | |
func.func @dont_fuse_when_same_trunc_op_dispatch_0_generic_2x4096x640x640_i8xi8xi8xi32xi32(%arg0: tensor<2x4096x640xi8>, %arg1: tensor<2x640x640xi8>, %arg2: tensor<2x640x640xi8>) -> tensor<2x4096x640xf16> { | |
%c0_i32 = arith.constant 0 : i32 | |
%0 = tensor.empty() : tensor<2x4096x640xf16> | |
%1 = tensor.empty() : tensor<2x4096x640xi32> | |
%2:2 = scf.forall (%arg3, %arg4, %arg5) = (0, 0, 0) to (2, 4096, 640) step (1, 64, 64) shared_outs(%arg6 = %1, %arg7 = %1) -> (tensor<2x4096x640xi32>, tensor<2x4096x640xi32>) { | |
%extracted_slice = tensor.extract_slice %arg0[%arg3, %arg4, 0] [1, 64, 640] [1, 1, 1] : tensor<2x4096x640xi8> to tensor<1x64x640xi8> | |
%extracted_slice_0 = tensor.extract_slice %arg2[%arg3, %arg5, 0] [1, 64, 640] [1, 1, 1] : tensor<2x640x640xi8> to tensor<1x64x640xi8> | |
%extracted_slice_1 = tensor.extract_slice %arg6[%arg3, %arg4, %arg5] [1, 64, 64] [1, 1, 1] : tensor<2x4096x640xi32> to tensor<1x64x64xi32> | |
%4 = linalg.fill ins(%c0_i32 : i32) outs(%extracted_slice_1 : tensor<1x64x64xi32>) -> tensor<1x64x64xi32> | |
%extracted_slice_2 = tensor.extract_slice %arg7[%arg3, %arg4, %arg5] [1, 64, 64] [1, 1, 1] : tensor<2x4096x640xi32> to tensor<1x64x64xi32> | |
%5 = linalg.fill ins(%c0_i32 : i32) outs(%extracted_slice_2 : tensor<1x64x64xi32>) -> tensor<1x64x64xi32> | |
%6:2 = linalg.generic {indexing_maps = [#map, #map1, #map1, #map2, #map2], iterator_types = ["parallel", "parallel", "parallel", "reduction"]} ins(%extracted_slice, %extracted_slice_0, %extracted_slice_0 : tensor<1x64x640xi8>, tensor<1x64x640xi8>, tensor<1x64x640xi8>) outs(%4, %5 : tensor<1x64x64xi32>, tensor<1x64x64xi32>) { | |
^bb0(%in: i8, %in_3: i8, %in_4: i8, %out: i32, %out_5: i32): | |
%7 = arith.extsi %in : i8 to i32 | |
%8 = arith.extsi %in_3 : i8 to i32 | |
%9 = arith.muli %7, %8 : i32 | |
%10 = arith.addi %out, %9 : i32 | |
%11 = arith.extsi %in_4 : i8 to i32 | |
%12 = arith.muli %7, %11 : i32 | |
%13 = arith.addi %out_5, %12 : i32 | |
linalg.yield %10, %13 : i32, i32 | |
} -> (tensor<1x64x64xi32>, tensor<1x64x64xi32>) | |
scf.forall.in_parallel { | |
tensor.parallel_insert_slice %6#0 into %arg6[%arg3, %arg4, %arg5] [1, 64, 64] [1, 1, 1] : tensor<1x64x64xi32> into tensor<2x4096x640xi32> | |
tensor.parallel_insert_slice %6#1 into %arg7[%arg3, %arg4, %arg5] [1, 64, 64] [1, 1, 1] : tensor<1x64x64xi32> into tensor<2x4096x640xi32> | |
} | |
} | |
%3 = linalg.generic {indexing_maps = [#map3, #map3, #map3], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2#1, %2#0 : tensor<2x4096x640xi32>, tensor<2x4096x640xi32>) outs(%0 : tensor<2x4096x640x | |
f16>) { | |
^bb0(%in: i32, %in_0: i32, %out: f16): | |
%4 = arith.sitofp %in : i32 to f32 | |
%5 = arith.truncf %4 : f32 to f16 | |
%6 = arith.sitofp %in_0 : i32 to f32 | |
%7 = arith.truncf %6 : f32 to f16 | |
%8 = arith.addf %5, %7 : f16 | |
linalg.yield %8 : f16 | |
} -> tensor<2x4096x640xf16> | |
return %3 : tensor<2x4096x640xf16> | |
} | |
module attributes {transform.with_named_sequence} { | |
transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) { | |
%0 = transform.structured.match ops{["tensor.parallel_insert_slice"]} in %arg0 : (!transform.any_op) -> !transform.any_op | |
%1:2 = transform.split_handle %0 : (!transform.any_op) -> (!transform.any_op, !transform.any_op) | |
%consumer, %fused_consumer = transform.test.fuse_consumer %1#0 : (!transform.any_op) -> (!transform.any_op, !transform.any_op) | |
transform.yield | |
} | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment