Created
October 29, 2024 14:20
-
-
Save pashu123/95a1677dab55d5aa6df470a1059dd884 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module { | |
func.func @main_graph(%arg0: !torch.vtensor<[?,?],si64>, %arg1: !torch.vtensor<[?,?],si64>, %arg2: !torch.vtensor<[?,?],si64>, %arg3: !torch.vtensor<[?,?,?],si64>, %arg4: !torch.vtensor<[4],si64>, %arg5: !torch.vtensor<[2],si64>) -> !torch.vtensor<[?,?,128,384],i1> attributes {torch.onnx_meta.ir_version = 7 : si64, torch.onnx_meta.opset_version = 21 : si64, torch.onnx_meta.producer_name = "pytorch", torch.onnx_meta.producer_version = "2.4.0"} { | |
%1 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0> : tensor<si64>} : () -> !torch.vtensor<[],si64> | |
%2 = torch.operator "onnx.Pad"(%arg1, %arg4, %1) {torch.onnx.mode = "constant"} : (!torch.vtensor<[?,?],si64>, !torch.vtensor<[4],si64>, !torch.vtensor<[],si64>) -> !torch.vtensor<[?,?],si64> | |
%3 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<1> : tensor<si64>} : () -> !torch.vtensor<[],si64> | |
%4 = torch.operator "onnx.Gather"(%arg5, %3) {torch.onnx.axis = 0 : si64} : (!torch.vtensor<[2],si64>, !torch.vtensor<[],si64>) -> !torch.vtensor<[],si64> | |
%5 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0> : tensor<si64>} : () -> !torch.vtensor<[],si64> | |
%6 = torch.operator "onnx.Div"(%4, %5) : (!torch.vtensor<[],si64>, !torch.vtensor<[],si64>) -> !torch.vtensor<[],si64> | |
%7 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64> | |
%8 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64> | |
%9 = torch.operator "onnx.Unsqueeze"(%6, %8) : (!torch.vtensor<[],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[1],si64> | |
%10 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<8> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64> | |
%11 = torch.operator "onnx.Concat"(%7, %9, %10) {torch.onnx.axis = 0 : si64} : (!torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[3],si64> | |
%12 = torch.operator "onnx.Reshape"(%2, %11) {torch.onnx.allowzero = 0 : si64} : (!torch.vtensor<[?,?],si64>, !torch.vtensor<[3],si64>) -> !torch.vtensor<[?,?,?],si64> | |
%13 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<1> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64> | |
%14 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<2> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64> | |
%15 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64> | |
%16 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<1> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64> | |
%17 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<-1> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64> | |
%18 = torch.operator "onnx.Unsqueeze"(%12, %17) : (!torch.vtensor<[?,?,?],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[?,?,?,1],si64> | |
%19 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<2> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64> | |
%20 = torch.operator "onnx.Unsqueeze"(%arg3, %19) : (!torch.vtensor<[?,?,?],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[?,?,1,?],si64> | |
%21 = torch.operator "onnx.Cast"(%18) {torch.onnx.to = 9 : si64} : (!torch.vtensor<[?,?,?,1],si64>) -> !torch.vtensor<[?,?,?,1],i1> | |
%22 = torch.operator "onnx.Cast"(%20) {torch.onnx.to = 9 : si64} : (!torch.vtensor<[?,?,1,?],si64>) -> !torch.vtensor<[?,?,1,?],i1> | |
%23 = torch.operator "onnx.And"(%21, %22) : (!torch.vtensor<[?,?,?,1],i1>, !torch.vtensor<[?,?,1,?],i1>) -> !torch.vtensor<[?,?,?,?],i1> | |
%24 = torch.operator "onnx.Cast"(%23) {torch.onnx.to = 9 : si64} : (!torch.vtensor<[?,?,?,?],i1>) -> !torch.vtensor<[?,?,?,?],i1> | |
%25 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0> : tensor<1x1x128x384xi1>} : () -> !torch.vtensor<[1,1,128,384],i1> | |
%26 = torch.operator "onnx.And"(%24, %25) : (!torch.vtensor<[?,?,?,?],i1>, !torch.vtensor<[1,1,128,384],i1>) -> !torch.vtensor<[?,?,128,384],i1> | |
return %26 : !torch.vtensor<[?,?,128,384],i1> | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment