Created
October 29, 2024 14:20
-
-
Save pashu123/95a1677dab55d5aa6df470a1059dd884 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module { | |
func.func @main_graph(%arg0: !torch.vtensor<[?,?],si64>, %arg1: !torch.vtensor<[?,?],si64>, %arg2: !torch.vtensor<[?,?],si64>, %arg3: !torch.vtensor<[?,?,?],si64>, %arg4: !torch.vtensor<[4],si64>, %arg5: !torch.vtensor<[2],si64>) -> !torch.vtensor<[?,?,128,384],i1> attributes {torch.onnx_meta.ir_version = 7 : si64, torch.onnx_meta.opset_version = 21 : si64, torch.onnx_meta.producer_name = "pytorch", torch.onnx_meta.producer_version = "2.4.0"} { | |
%1 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0> : tensor<si64>} : () -> !torch.vtensor<[],si64> | |
%2 = torch.operator "onnx.Pad"(%arg1, %arg4, %1) {torch.onnx.mode = "constant"} : (!torch.vtensor<[?,?],si64>, !torch.vtensor<[4],si64>, !torch.vtensor<[],si64>) -> !torch.vtensor<[?,?],si64> | |
%3 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<1> : tensor<si64>} : () -> !torch.vtensor<[],si64> | |
%4 = torch.operator "onnx.Gather"(%arg5, %3) {torch.onnx.axis = 0 : si64} : (!torch.vtensor<[2],si64>, !torch.vtensor<[],si64>) -> !torch.vtensor<[],si64> | |
%5 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0> : tensor<si64>} : () -> !torch.vtensor<[],si64> | |
%6 = torch.operator "onnx.Div"(%4, %5) : (!torch.vtensor<[],si64>, !torch.vtensor<[],si64>) -> !torch.vtensor<[],si64> | |
%7 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64> | |
%8 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64> | |
%9 = torch.operator "onnx.Unsqueeze"(%6, %8) : (!torch.vtensor<[],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[1],si64> | |
%10 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<8> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64> | |
%11 = torch.operator "onnx.Concat"(%7, %9, %10) {torch.onnx.axis = 0 : si64} : (!torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[3],si64> | |
%12 = torch.operator "onnx.Reshape"(%2, %11) {torch.onnx.allowzero = 0 : si64} : (!torch.vtensor<[?,?],si64>, !torch.vtensor<[3],si64>) -> !torch.vtensor<[?,?,?],si64> | |
%13 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<1> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64> | |
%14 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<2> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64> | |
%15 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64> | |
%16 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<1> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64> | |
%17 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<-1> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64> | |
%18 = torch.operator "onnx.Unsqueeze"(%12, %17) : (!torch.vtensor<[?,?,?],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[?,?,?,1],si64> | |
%19 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<2> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64> | |
%20 = torch.operator "onnx.Unsqueeze"(%arg3, %19) : (!torch.vtensor<[?,?,?],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[?,?,1,?],si64> | |
%21 = torch.operator "onnx.Cast"(%18) {torch.onnx.to = 9 : si64} : (!torch.vtensor<[?,?,?,1],si64>) -> !torch.vtensor<[?,?,?,1],i1> | |
%22 = torch.operator "onnx.Cast"(%20) {torch.onnx.to = 9 : si64} : (!torch.vtensor<[?,?,1,?],si64>) -> !torch.vtensor<[?,?,1,?],i1> | |
%23 = torch.operator "onnx.And"(%21, %22) : (!torch.vtensor<[?,?,?,1],i1>, !torch.vtensor<[?,?,1,?],i1>) -> !torch.vtensor<[?,?,?,?],i1> | |
%24 = torch.operator "onnx.Cast"(%23) {torch.onnx.to = 9 : si64} : (!torch.vtensor<[?,?,?,?],i1>) -> !torch.vtensor<[?,?,?,?],i1> | |
%25 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0> : tensor<1x1x128x384xi1>} : () -> !torch.vtensor<[1,1,128,384],i1> | |
%26 = torch.operator "onnx.And"(%24, %25) : (!torch.vtensor<[?,?,?,?],i1>, !torch.vtensor<[1,1,128,384],i1>) -> !torch.vtensor<[?,?,128,384],i1> | |
return %26 : !torch.vtensor<[?,?,128,384],i1> | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment