Created
September 24, 2022 09:53
-
-
Save pashu123/bedb0edf097639f1b76ddd02732efe65 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from transformers import CLIPTextModel, CLIPTokenizer | |
from diffusers import AutoencoderKL, UNet2DConditionModel, PNDMScheduler | |
import torch | |
from PIL import Image | |
from diffusers import LMSDiscreteScheduler | |
from tqdm.auto import tqdm | |
from shark.shark_inference import SharkInference | |
from torch.fx.experimental.proxy_tensor import make_fx | |
from torch._decomp import get_decompositions | |
import torch_mlir | |
import tempfile | |
import numpy as np | |
import torchdynamo | |
from shark.sharkdynamo.utils import make_shark_compiler | |
# pip install diffusers | |
# pip install scipy | |
if __name__ == "__main__": | |
YOUR_TOKEN = "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" | |
# 1. Load the autoencoder model which will be used to decode the latents into image space. | |
vae = AutoencoderKL.from_pretrained( | |
"CompVis/stable-diffusion-v1-4", | |
subfolder="vae", | |
use_auth_token=YOUR_TOKEN, | |
) | |
@torchdynamo.optimize( | |
make_shark_compiler(use_tracing=False, device="cpu", verbose=False) | |
) | |
def vae_dynamo(inp): | |
return vae.decode(inp).sample | |
latents = torch.rand(1, 4, 64, 64) | |
image = vae_dynamo(latents) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment