Created
August 19, 2024 10:56
-
-
Save pashu123/e417e05bce68fe87094565c1eda0927d to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#map = affine_map<(d0, d1, d2) -> (d1, d2)> | |
#map1 = affine_map<(d0, d1, d2) -> (d0, d1, d2)> | |
#map2 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d3)> | |
#map3 = affine_map<(d0, d1, d2, d3) -> (d0, d2, d3)> | |
#map4 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)> | |
module { | |
util.func public @matmul_broad(%arg0: !hal.buffer_view, %arg1: !hal.buffer_view) -> !hal.buffer_view attributes {iree.abi.stub, iree.reflection = {iree.abi.declaration = "sync func @matmul_broad(%input0: tensor<?x?x3200xf32>, %input1: tensor<8640x3200xf16>) -> (%output0: tensor<?x?x8640xf32>)"}} { | |
%cst = arith.constant 0.000000e+00 : f32 | |
%0 = hal.buffer_view.dim<%arg0 : !hal.buffer_view>[0] : index | |
%1 = hal.buffer_view.dim<%arg0 : !hal.buffer_view>[1] : index | |
%2 = hal.tensor.import %arg0 "input0" : !hal.buffer_view -> tensor<?x?x3200xf32>{%0, %1} | |
%3 = hal.tensor.import %arg1 "input1" : !hal.buffer_view -> tensor<8640x3200xf16> | |
%4 = flow.dispatch.region -> (tensor<?x8640x3200xf16>{%0}) { | |
%9 = tensor.empty(%0) : tensor<?x8640x3200xf16> | |
%10 = linalg.generic {indexing_maps = [#map, #map1], iterator_types = ["parallel", "parallel", "parallel"]} ins(%3 : tensor<8640x3200xf16>) outs(%9 : tensor<?x8640x3200xf16>) { | |
^bb0(%in: f16, %out: f16): | |
linalg.yield %in : f16 | |
} -> tensor<?x8640x3200xf16> | |
flow.return %10 : tensor<?x8640x3200xf16> | |
} | |
%5 = iree_encoding.set_encoding %4 : tensor<?x8640x3200xf16> -> tensor<?x8640x3200xf16, #iree_encoding.encoding<operand_index = 1 : index, op_type = matmul, element_types = [f32, f16, f32], original_type = tensor<?x8640x3200xf16>, user_indexing_maps = [#map2, #map3, #map4], round_dims_to = array<i64: 32, 32, 32>>> | |
%6 = iree_encoding.set_encoding %2 : tensor<?x?x3200xf32> -> tensor<?x?x3200xf32, #iree_encoding.encoding<operand_index = 0 : index, op_type = matmul, element_types = [f32, f16, f32], original_type = tensor<?x?x3200xf32>, user_indexing_maps = [#map2, #map3, #map4], round_dims_to = array<i64: 32, 32, 32>>> | |
%7 = flow.dispatch.region -> (tensor<?x?x8640xf32>{%0, %1}) { | |
%9 = tensor.empty(%0, %1) : tensor<?x?x8640xf32, #iree_encoding.encoding<operand_index = 2 : index, op_type = matmul, element_types = [f32, f16, f32], original_type = tensor<?x?x8640xf32>, user_indexing_maps = [#map2, #map3, #map4], round_dims_to = array<i64: 32, 32, 32>>> | |
%10 = linalg.fill ins(%cst : f32) outs(%9 : tensor<?x?x8640xf32, #iree_encoding.encoding<operand_index = 2 : index, op_type = matmul, element_types = [f32, f16, f32], original_type = tensor<?x?x8640xf32>, user_indexing_maps = [#map2, #map3, #map4], round_dims_to = array<i64: 32, 32, 32>>>) -> tensor<?x?x8640xf32, #iree_encoding.encoding<operand_index = 2 : index, op_type = matmul, element_types = [f32, f16, f32], original_type = tensor<?x?x8640xf32>, user_indexing_maps = [#map2, #map3, #map4], round_dims_to = array<i64: 32, 32, 32>>> | |
%11 = linalg.batch_matmul_transpose_b ins(%6, %5 : tensor<?x?x3200xf32, #iree_encoding.encoding<operand_index = 0 : index, op_type = matmul, element_types = [f32, f16, f32], original_type = tensor<?x?x3200xf32>, user_indexing_maps = [#map2, #map3, #map4], round_dims_to = array<i64: 32, 32, 32>>>, tensor<?x8640x3200xf16, #iree_encoding.encoding<operand_index = 1 : index, op_type = matmul, element_types = [f32, f16, f32], original_type = tensor<?x8640x3200xf16>, user_indexing_maps = [#map2, #map3, #map4], round_dims_to = array<i64: 32, 32, 32>>>) outs(%10 : tensor<?x?x8640xf32, #iree_encoding.encoding<operand_index = 2 : index, op_type = matmul, element_types = [f32, f16, f32], original_type = tensor<?x?x8640xf32>, user_indexing_maps = [#map2, #map3, #map4], round_dims_to = array<i64: 32, 32, 32>>>) -> tensor<?x?x8640xf32, #iree_encoding.encoding<operand_index = 2 : index, op_type = matmul, element_types = [f32, f16, f32], original_type = tensor<?x?x8640xf32>, user_indexing_maps = [#map2, #map3, #map4], round_dims_to = array<i64: 32, 32, 32>>> | |
%12 = iree_encoding.unset_encoding %11 : tensor<?x?x8640xf32, #iree_encoding.encoding<operand_index = 2 : index, op_type = matmul, element_types = [f32, f16, f32], original_type = tensor<?x?x8640xf32>, user_indexing_maps = [#map2, #map3, #map4], round_dims_to = array<i64: 32, 32, 32>>> -> tensor<?x?x8640xf32> | |
%extracted_slice = tensor.extract_slice %12[0, 0, 0] [%0, %1, 8640] [1, 1, 1] : tensor<?x?x8640xf32> to tensor<?x?x8640xf32> | |
flow.return %extracted_slice : tensor<?x?x8640xf32> | |
} | |
%8 = hal.tensor.export %7 "output0" : tensor<?x?x8640xf32>{%0, %1} -> !hal.buffer_view | |
util.return %8 : !hal.buffer_view | |
} | |
} | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment