Skip to content

Instantly share code, notes, and snippets.

@pashu123
Created October 14, 2022 14:16
Show Gist options
  • Save pashu123/f7d4d2a2d2c91bd46423d0006d23c030 to your computer and use it in GitHub Desktop.
Save pashu123/f7d4d2a2d2c91bd46423d0006d23c030 to your computer and use it in GitHub Desktop.
This file has been truncated, but you can view the full file.
#map0 = affine_map<(d0) -> (0)>
#map1 = affine_map<(d0) -> (d0)>
#map2 = affine_map<(d0) -> ()>
#map3 = affine_map<() -> ()>
#map4 = affine_map<(d0, d1) -> ()>
#map5 = affine_map<(d0, d1) -> (d0, d1)>
#map6 = affine_map<(d0, d1) -> (d0, 0)>
#map7 = affine_map<(d0, d1) -> (0, d1)>
#map8 = affine_map<(d0, d1) -> (d1, d0)>
#map9 = affine_map<(d0, d1) -> (d1)>
#map10 = affine_map<(d0, d1, d2, d3) -> (d1)>
#map11 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
#map12 = affine_map<(d0, d1, d2, d3) -> ()>
#map13 = affine_map<(d0, d1, d2, d3) -> (d0, d1, 0, 0)>
#map14 = affine_map<(d0, d1, d2, d3) -> (d1, 0, 0)>
#map15 = affine_map<(d0, d1, d2, d3) -> (d0, d2, d3, d1)>
#map16 = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
#map17 = affine_map<(d0, d1, d2) -> (d0, d1, 0)>
#map18 = affine_map<(d0, d1, d2) -> (d2)>
#map19 = affine_map<(d0, d1, d2, d3) -> (d0, d2, d1, d3)>
#map20 = affine_map<(d0, d1, d2) -> (d0, d2, d1)>
#map21 = affine_map<(d0, d1, d2) -> ()>
#map22 = affine_map<(d0, d1, d2, d3) -> (d0, d3, d1, d2)>
module attributes {torch.debug_module_name = "_lambda"} {
func.func @forward(%arg0: tensor<2x4x64x64xf16>, %arg1: tensor<1xf16>, %arg2: tensor<2x77x768xf16>) -> tensor<2x4x64x64xf16> {
%cst = arith.constant dense<0.079056941504209485> : tensor<f64>
%cst_0 = arith.constant dense<0.11180339887498948> : tensor<f64>
%cst_1 = arith.constant dense<0.15811388300841897> : tensor<f64>
%cst_2 = arith.constant dense<9.9999999999999995E-7> : tensor<f64>
%cst_3 = arith.constant dense<1.000000e+00> : tensor<f64>
%cst_4 = arith.constant dense<1.000000e-05> : tensor<f64>
%cst_5 = arith.constant dense<1> : tensor<i64>
%cst_6 = arith.constant dense<160> : tensor<i64>
%cst_7 = arith.constant dense<-9.2103403719761836> : tensor<f64>
%cst_8 = arith.constant dense_resource<__elided__> : tensor<1280x320xf16>
%cst_9 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_10 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_11 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_12 = arith.constant dense_resource<__elided__> : tensor<320x4x3x3xf16>
%cst_13 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_14 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_15 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_16 = arith.constant dense_resource<__elided__> : tensor<320x320x3x3xf16>
%cst_17 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_18 = arith.constant dense_resource<__elided__> : tensor<320x1280xf16>
%cst_19 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_20 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_21 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_22 = arith.constant dense_resource<__elided__> : tensor<320x320x3x3xf16>
%cst_23 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_24 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_25 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_26 = arith.constant dense_resource<__elided__> : tensor<320x320x1x1xf16>
%cst_27 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_28 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_29 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_30 = arith.constant dense_resource<__elided__> : tensor<320x320xf16>
%cst_31 = arith.constant dense_resource<__elided__> : tensor<320x320xf16>
%cst_32 = arith.constant dense_resource<__elided__> : tensor<320x320xf16>
%cst_33 = arith.constant dense_resource<__elided__> : tensor<320x320xf16>
%cst_34 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_35 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_36 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_37 = arith.constant dense_resource<__elided__> : tensor<320x320xf16>
%cst_38 = arith.constant dense_resource<__elided__> : tensor<320x768xf16>
%cst_39 = arith.constant dense_resource<__elided__> : tensor<320x768xf16>
%cst_40 = arith.constant dense_resource<__elided__> : tensor<320x320xf16>
%cst_41 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_42 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_43 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_44 = arith.constant dense_resource<__elided__> : tensor<2560x320xf16>
%cst_45 = arith.constant dense_resource<__elided__> : tensor<2560xf16>
%cst_46 = arith.constant dense_resource<__elided__> : tensor<320x1280xf16>
%cst_47 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_48 = arith.constant dense_resource<__elided__> : tensor<320x320x1x1xf16>
%cst_49 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_50 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_51 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_52 = arith.constant dense_resource<__elided__> : tensor<320x320x3x3xf16>
%cst_53 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_54 = arith.constant dense_resource<__elided__> : tensor<320x1280xf16>
%cst_55 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_56 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_57 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_58 = arith.constant dense_resource<__elided__> : tensor<320x320x3x3xf16>
%cst_59 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_60 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_61 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_62 = arith.constant dense_resource<__elided__> : tensor<320x320x1x1xf16>
%cst_63 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_64 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_65 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_66 = arith.constant dense_resource<__elided__> : tensor<320x320xf16>
%cst_67 = arith.constant dense_resource<__elided__> : tensor<320x320xf16>
%cst_68 = arith.constant dense_resource<__elided__> : tensor<320x320xf16>
%cst_69 = arith.constant dense_resource<__elided__> : tensor<320x320xf16>
%cst_70 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_71 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_72 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_73 = arith.constant dense_resource<__elided__> : tensor<320x320xf16>
%cst_74 = arith.constant dense_resource<__elided__> : tensor<320x768xf16>
%cst_75 = arith.constant dense_resource<__elided__> : tensor<320x768xf16>
%cst_76 = arith.constant dense_resource<__elided__> : tensor<320x320xf16>
%cst_77 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_78 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_79 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_80 = arith.constant dense_resource<__elided__> : tensor<2560x320xf16>
%cst_81 = arith.constant dense_resource<__elided__> : tensor<2560xf16>
%cst_82 = arith.constant dense_resource<__elided__> : tensor<320x1280xf16>
%cst_83 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_84 = arith.constant dense_resource<__elided__> : tensor<320x320x1x1xf16>
%cst_85 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_86 = arith.constant dense_resource<__elided__> : tensor<320x320x3x3xf16>
%cst_87 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_88 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_89 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_90 = arith.constant dense_resource<__elided__> : tensor<640x320x3x3xf16>
%cst_91 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_92 = arith.constant dense_resource<__elided__> : tensor<640x1280xf16>
%cst_93 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_94 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_95 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_96 = arith.constant dense_resource<__elided__> : tensor<640x640x3x3xf16>
%cst_97 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_98 = arith.constant dense_resource<__elided__> : tensor<640x320x1x1xf16>
%cst_99 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_100 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_101 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_102 = arith.constant dense_resource<__elided__> : tensor<640x640x1x1xf16>
%cst_103 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_104 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_105 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_106 = arith.constant dense_resource<__elided__> : tensor<640x640xf16>
%cst_107 = arith.constant dense_resource<__elided__> : tensor<640x640xf16>
%cst_108 = arith.constant dense_resource<__elided__> : tensor<640x640xf16>
%cst_109 = arith.constant dense_resource<__elided__> : tensor<640x640xf16>
%cst_110 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_111 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_112 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_113 = arith.constant dense_resource<__elided__> : tensor<640x640xf16>
%cst_114 = arith.constant dense_resource<__elided__> : tensor<640x768xf16>
%cst_115 = arith.constant dense_resource<__elided__> : tensor<640x768xf16>
%cst_116 = arith.constant dense_resource<__elided__> : tensor<640x640xf16>
%cst_117 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_118 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_119 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_120 = arith.constant dense_resource<__elided__> : tensor<5120x640xf16>
%cst_121 = arith.constant dense_resource<__elided__> : tensor<5120xf16>
%cst_122 = arith.constant dense_resource<__elided__> : tensor<640x2560xf16>
%cst_123 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_124 = arith.constant dense_resource<__elided__> : tensor<640x640x1x1xf16>
%cst_125 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_126 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_127 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_128 = arith.constant dense_resource<__elided__> : tensor<640x640x3x3xf16>
%cst_129 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_130 = arith.constant dense_resource<__elided__> : tensor<640x1280xf16>
%cst_131 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_132 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_133 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_134 = arith.constant dense_resource<__elided__> : tensor<640x640x3x3xf16>
%cst_135 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_136 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_137 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_138 = arith.constant dense_resource<__elided__> : tensor<640x640x1x1xf16>
%cst_139 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_140 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_141 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_142 = arith.constant dense_resource<__elided__> : tensor<640x640xf16>
%cst_143 = arith.constant dense_resource<__elided__> : tensor<640x640xf16>
%cst_144 = arith.constant dense_resource<__elided__> : tensor<640x640xf16>
%cst_145 = arith.constant dense_resource<__elided__> : tensor<640x640xf16>
%cst_146 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_147 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_148 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_149 = arith.constant dense_resource<__elided__> : tensor<640x640xf16>
%cst_150 = arith.constant dense_resource<__elided__> : tensor<640x768xf16>
%cst_151 = arith.constant dense_resource<__elided__> : tensor<640x768xf16>
%cst_152 = arith.constant dense_resource<__elided__> : tensor<640x640xf16>
%cst_153 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_154 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_155 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_156 = arith.constant dense_resource<__elided__> : tensor<5120x640xf16>
%cst_157 = arith.constant dense_resource<__elided__> : tensor<5120xf16>
%cst_158 = arith.constant dense_resource<__elided__> : tensor<640x2560xf16>
%cst_159 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_160 = arith.constant dense_resource<__elided__> : tensor<640x640x1x1xf16>
%cst_161 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_162 = arith.constant dense_resource<__elided__> : tensor<640x640x3x3xf16>
%cst_163 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_164 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_165 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_166 = arith.constant dense_resource<__elided__> : tensor<1280x640x3x3xf16>
%cst_167 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_168 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_169 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_170 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_171 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_172 = arith.constant dense_resource<__elided__> : tensor<1280x1280x3x3xf16>
%cst_173 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_174 = arith.constant dense_resource<__elided__> : tensor<1280x640x1x1xf16>
%cst_175 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_176 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_177 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_178 = arith.constant dense_resource<__elided__> : tensor<1280x1280x1x1xf16>
%cst_179 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_180 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_181 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_182 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_183 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_184 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_185 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_186 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_187 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_188 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_189 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_190 = arith.constant dense_resource<__elided__> : tensor<1280x768xf16>
%cst_191 = arith.constant dense_resource<__elided__> : tensor<1280x768xf16>
%cst_192 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_193 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_194 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_195 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_196 = arith.constant dense_resource<__elided__> : tensor<10240x1280xf16>
%cst_197 = arith.constant dense_resource<__elided__> : tensor<10240xf16>
%cst_198 = arith.constant dense_resource<__elided__> : tensor<1280x5120xf16>
%cst_199 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_200 = arith.constant dense_resource<__elided__> : tensor<1280x1280x1x1xf16>
%cst_201 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_202 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_203 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_204 = arith.constant dense_resource<__elided__> : tensor<1280x1280x3x3xf16>
%cst_205 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_206 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_207 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_208 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_209 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_210 = arith.constant dense_resource<__elided__> : tensor<1280x1280x3x3xf16>
%cst_211 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_212 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_213 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_214 = arith.constant dense_resource<__elided__> : tensor<1280x1280x1x1xf16>
%cst_215 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_216 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_217 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_218 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_219 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_220 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_221 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_222 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_223 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_224 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_225 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_226 = arith.constant dense_resource<__elided__> : tensor<1280x768xf16>
%cst_227 = arith.constant dense_resource<__elided__> : tensor<1280x768xf16>
%cst_228 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_229 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_230 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_231 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_232 = arith.constant dense_resource<__elided__> : tensor<10240x1280xf16>
%cst_233 = arith.constant dense_resource<__elided__> : tensor<10240xf16>
%cst_234 = arith.constant dense_resource<__elided__> : tensor<1280x5120xf16>
%cst_235 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_236 = arith.constant dense_resource<__elided__> : tensor<1280x1280x1x1xf16>
%cst_237 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_238 = arith.constant dense_resource<__elided__> : tensor<1280x1280x3x3xf16>
%cst_239 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_240 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_241 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_242 = arith.constant dense_resource<__elided__> : tensor<1280x1280x3x3xf16>
%cst_243 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_244 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_245 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_246 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_247 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_248 = arith.constant dense_resource<__elided__> : tensor<1280x1280x3x3xf16>
%cst_249 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_250 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_251 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_252 = arith.constant dense_resource<__elided__> : tensor<1280x1280x3x3xf16>
%cst_253 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_254 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_255 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_256 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_257 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_258 = arith.constant dense_resource<__elided__> : tensor<1280x1280x3x3xf16>
%cst_259 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_260 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_261 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_262 = arith.constant dense_resource<__elided__> : tensor<1280x1280x3x3xf16>
%cst_263 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_264 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_265 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_266 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_267 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_268 = arith.constant dense_resource<__elided__> : tensor<1280x1280x3x3xf16>
%cst_269 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_270 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_271 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_272 = arith.constant dense_resource<__elided__> : tensor<1280x1280x1x1xf16>
%cst_273 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_274 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_275 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_276 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_277 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_278 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_279 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_280 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_281 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_282 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_283 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_284 = arith.constant dense_resource<__elided__> : tensor<1280x768xf16>
%cst_285 = arith.constant dense_resource<__elided__> : tensor<1280x768xf16>
%cst_286 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_287 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_288 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_289 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_290 = arith.constant dense_resource<__elided__> : tensor<10240x1280xf16>
%cst_291 = arith.constant dense_resource<__elided__> : tensor<10240xf16>
%cst_292 = arith.constant dense_resource<__elided__> : tensor<1280x5120xf16>
%cst_293 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_294 = arith.constant dense_resource<__elided__> : tensor<1280x1280x1x1xf16>
%cst_295 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_296 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_297 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_298 = arith.constant dense_resource<__elided__> : tensor<1280x1280x3x3xf16>
%cst_299 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_300 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_301 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_302 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_303 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_304 = arith.constant dense_resource<__elided__> : tensor<1280x1280x3x3xf16>
%cst_305 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_306 = arith.constant dense_resource<__elided__> : tensor<2560xf16>
%cst_307 = arith.constant dense_resource<__elided__> : tensor<2560xf16>
%cst_308 = arith.constant dense_resource<__elided__> : tensor<1280x2560x3x3xf16>
%cst_309 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_310 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_311 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_312 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_313 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_314 = arith.constant dense_resource<__elided__> : tensor<1280x1280x3x3xf16>
%cst_315 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_316 = arith.constant dense_resource<__elided__> : tensor<1280x2560x1x1xf16>
%cst_317 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_318 = arith.constant dense_resource<__elided__> : tensor<2560xf16>
%cst_319 = arith.constant dense_resource<__elided__> : tensor<2560xf16>
%cst_320 = arith.constant dense_resource<__elided__> : tensor<1280x2560x3x3xf16>
%cst_321 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_322 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_323 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_324 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_325 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_326 = arith.constant dense_resource<__elided__> : tensor<1280x1280x3x3xf16>
%cst_327 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_328 = arith.constant dense_resource<__elided__> : tensor<1280x2560x1x1xf16>
%cst_329 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_330 = arith.constant dense_resource<__elided__> : tensor<2560xf16>
%cst_331 = arith.constant dense_resource<__elided__> : tensor<2560xf16>
%cst_332 = arith.constant dense_resource<__elided__> : tensor<1280x2560x3x3xf16>
%cst_333 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_334 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_335 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_336 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_337 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_338 = arith.constant dense_resource<__elided__> : tensor<1280x1280x3x3xf16>
%cst_339 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_340 = arith.constant dense_resource<__elided__> : tensor<1280x2560x1x1xf16>
%cst_341 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_342 = arith.constant dense_resource<__elided__> : tensor<1280x1280x3x3xf16>
%cst_343 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_344 = arith.constant dense_resource<__elided__> : tensor<2560xf16>
%cst_345 = arith.constant dense_resource<__elided__> : tensor<2560xf16>
%cst_346 = arith.constant dense_resource<__elided__> : tensor<1280x2560x3x3xf16>
%cst_347 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_348 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_349 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_350 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_351 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_352 = arith.constant dense_resource<__elided__> : tensor<1280x1280x3x3xf16>
%cst_353 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_354 = arith.constant dense_resource<__elided__> : tensor<1280x2560x1x1xf16>
%cst_355 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_356 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_357 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_358 = arith.constant dense_resource<__elided__> : tensor<1280x1280x1x1xf16>
%cst_359 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_360 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_361 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_362 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_363 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_364 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_365 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_366 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_367 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_368 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_369 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_370 = arith.constant dense_resource<__elided__> : tensor<1280x768xf16>
%cst_371 = arith.constant dense_resource<__elided__> : tensor<1280x768xf16>
%cst_372 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_373 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_374 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_375 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_376 = arith.constant dense_resource<__elided__> : tensor<10240x1280xf16>
%cst_377 = arith.constant dense_resource<__elided__> : tensor<10240xf16>
%cst_378 = arith.constant dense_resource<__elided__> : tensor<1280x5120xf16>
%cst_379 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_380 = arith.constant dense_resource<__elided__> : tensor<1280x1280x1x1xf16>
%cst_381 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_382 = arith.constant dense_resource<__elided__> : tensor<2560xf16>
%cst_383 = arith.constant dense_resource<__elided__> : tensor<2560xf16>
%cst_384 = arith.constant dense_resource<__elided__> : tensor<1280x2560x3x3xf16>
%cst_385 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_386 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_387 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_388 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_389 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_390 = arith.constant dense_resource<__elided__> : tensor<1280x1280x3x3xf16>
%cst_391 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_392 = arith.constant dense_resource<__elided__> : tensor<1280x2560x1x1xf16>
%cst_393 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_394 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_395 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_396 = arith.constant dense_resource<__elided__> : tensor<1280x1280x1x1xf16>
%cst_397 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_398 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_399 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_400 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_401 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_402 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_403 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_404 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_405 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_406 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_407 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_408 = arith.constant dense_resource<__elided__> : tensor<1280x768xf16>
%cst_409 = arith.constant dense_resource<__elided__> : tensor<1280x768xf16>
%cst_410 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_411 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_412 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_413 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_414 = arith.constant dense_resource<__elided__> : tensor<10240x1280xf16>
%cst_415 = arith.constant dense_resource<__elided__> : tensor<10240xf16>
%cst_416 = arith.constant dense_resource<__elided__> : tensor<1280x5120xf16>
%cst_417 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_418 = arith.constant dense_resource<__elided__> : tensor<1280x1280x1x1xf16>
%cst_419 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_420 = arith.constant dense_resource<__elided__> : tensor<1920xf16>
%cst_421 = arith.constant dense_resource<__elided__> : tensor<1920xf16>
%cst_422 = arith.constant dense_resource<__elided__> : tensor<1280x1920x3x3xf16>
%cst_423 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_424 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_425 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_426 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_427 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_428 = arith.constant dense_resource<__elided__> : tensor<1280x1280x3x3xf16>
%cst_429 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_430 = arith.constant dense_resource<__elided__> : tensor<1280x1920x1x1xf16>
%cst_431 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_432 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_433 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_434 = arith.constant dense_resource<__elided__> : tensor<1280x1280x1x1xf16>
%cst_435 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_436 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_437 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_438 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_439 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_440 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_441 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_442 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_443 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_444 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_445 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_446 = arith.constant dense_resource<__elided__> : tensor<1280x768xf16>
%cst_447 = arith.constant dense_resource<__elided__> : tensor<1280x768xf16>
%cst_448 = arith.constant dense_resource<__elided__> : tensor<1280x1280xf16>
%cst_449 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_450 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_451 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_452 = arith.constant dense_resource<__elided__> : tensor<10240x1280xf16>
%cst_453 = arith.constant dense_resource<__elided__> : tensor<10240xf16>
%cst_454 = arith.constant dense_resource<__elided__> : tensor<1280x5120xf16>
%cst_455 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_456 = arith.constant dense_resource<__elided__> : tensor<1280x1280x1x1xf16>
%cst_457 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_458 = arith.constant dense_resource<__elided__> : tensor<1280x1280x3x3xf16>
%cst_459 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_460 = arith.constant dense_resource<__elided__> : tensor<1920xf16>
%cst_461 = arith.constant dense_resource<__elided__> : tensor<1920xf16>
%cst_462 = arith.constant dense_resource<__elided__> : tensor<640x1920x3x3xf16>
%cst_463 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_464 = arith.constant dense_resource<__elided__> : tensor<640x1280xf16>
%cst_465 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_466 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_467 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_468 = arith.constant dense_resource<__elided__> : tensor<640x640x3x3xf16>
%cst_469 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_470 = arith.constant dense_resource<__elided__> : tensor<640x1920x1x1xf16>
%cst_471 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_472 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_473 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_474 = arith.constant dense_resource<__elided__> : tensor<640x640x1x1xf16>
%cst_475 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_476 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_477 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_478 = arith.constant dense_resource<__elided__> : tensor<640x640xf16>
%cst_479 = arith.constant dense_resource<__elided__> : tensor<640x640xf16>
%cst_480 = arith.constant dense_resource<__elided__> : tensor<640x640xf16>
%cst_481 = arith.constant dense_resource<__elided__> : tensor<640x640xf16>
%cst_482 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_483 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_484 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_485 = arith.constant dense_resource<__elided__> : tensor<640x640xf16>
%cst_486 = arith.constant dense_resource<__elided__> : tensor<640x768xf16>
%cst_487 = arith.constant dense_resource<__elided__> : tensor<640x768xf16>
%cst_488 = arith.constant dense_resource<__elided__> : tensor<640x640xf16>
%cst_489 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_490 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_491 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_492 = arith.constant dense_resource<__elided__> : tensor<5120x640xf16>
%cst_493 = arith.constant dense_resource<__elided__> : tensor<5120xf16>
%cst_494 = arith.constant dense_resource<__elided__> : tensor<640x2560xf16>
%cst_495 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_496 = arith.constant dense_resource<__elided__> : tensor<640x640x1x1xf16>
%cst_497 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_498 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_499 = arith.constant dense_resource<__elided__> : tensor<1280xf16>
%cst_500 = arith.constant dense_resource<__elided__> : tensor<640x1280x3x3xf16>
%cst_501 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_502 = arith.constant dense_resource<__elided__> : tensor<640x1280xf16>
%cst_503 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_504 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_505 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_506 = arith.constant dense_resource<__elided__> : tensor<640x640x3x3xf16>
%cst_507 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_508 = arith.constant dense_resource<__elided__> : tensor<640x1280x1x1xf16>
%cst_509 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_510 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_511 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_512 = arith.constant dense_resource<__elided__> : tensor<640x640x1x1xf16>
%cst_513 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_514 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_515 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_516 = arith.constant dense_resource<__elided__> : tensor<640x640xf16>
%cst_517 = arith.constant dense_resource<__elided__> : tensor<640x640xf16>
%cst_518 = arith.constant dense_resource<__elided__> : tensor<640x640xf16>
%cst_519 = arith.constant dense_resource<__elided__> : tensor<640x640xf16>
%cst_520 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_521 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_522 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_523 = arith.constant dense_resource<__elided__> : tensor<640x640xf16>
%cst_524 = arith.constant dense_resource<__elided__> : tensor<640x768xf16>
%cst_525 = arith.constant dense_resource<__elided__> : tensor<640x768xf16>
%cst_526 = arith.constant dense_resource<__elided__> : tensor<640x640xf16>
%cst_527 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_528 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_529 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_530 = arith.constant dense_resource<__elided__> : tensor<5120x640xf16>
%cst_531 = arith.constant dense_resource<__elided__> : tensor<5120xf16>
%cst_532 = arith.constant dense_resource<__elided__> : tensor<640x2560xf16>
%cst_533 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_534 = arith.constant dense_resource<__elided__> : tensor<640x640x1x1xf16>
%cst_535 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_536 = arith.constant dense_resource<__elided__> : tensor<960xf16>
%cst_537 = arith.constant dense_resource<__elided__> : tensor<960xf16>
%cst_538 = arith.constant dense_resource<__elided__> : tensor<640x960x3x3xf16>
%cst_539 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_540 = arith.constant dense_resource<__elided__> : tensor<640x1280xf16>
%cst_541 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_542 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_543 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_544 = arith.constant dense_resource<__elided__> : tensor<640x640x3x3xf16>
%cst_545 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_546 = arith.constant dense_resource<__elided__> : tensor<640x960x1x1xf16>
%cst_547 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_548 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_549 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_550 = arith.constant dense_resource<__elided__> : tensor<640x640x1x1xf16>
%cst_551 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_552 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_553 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_554 = arith.constant dense_resource<__elided__> : tensor<640x640xf16>
%cst_555 = arith.constant dense_resource<__elided__> : tensor<640x640xf16>
%cst_556 = arith.constant dense_resource<__elided__> : tensor<640x640xf16>
%cst_557 = arith.constant dense_resource<__elided__> : tensor<640x640xf16>
%cst_558 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_559 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_560 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_561 = arith.constant dense_resource<__elided__> : tensor<640x640xf16>
%cst_562 = arith.constant dense_resource<__elided__> : tensor<640x768xf16>
%cst_563 = arith.constant dense_resource<__elided__> : tensor<640x768xf16>
%cst_564 = arith.constant dense_resource<__elided__> : tensor<640x640xf16>
%cst_565 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_566 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_567 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_568 = arith.constant dense_resource<__elided__> : tensor<5120x640xf16>
%cst_569 = arith.constant dense_resource<__elided__> : tensor<5120xf16>
%cst_570 = arith.constant dense_resource<__elided__> : tensor<640x2560xf16>
%cst_571 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_572 = arith.constant dense_resource<__elided__> : tensor<640x640x1x1xf16>
%cst_573 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_574 = arith.constant dense_resource<__elided__> : tensor<640x640x3x3xf16>
%cst_575 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_576 = arith.constant dense_resource<__elided__> : tensor<960xf16>
%cst_577 = arith.constant dense_resource<__elided__> : tensor<960xf16>
%cst_578 = arith.constant dense_resource<__elided__> : tensor<320x960x3x3xf16>
%cst_579 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_580 = arith.constant dense_resource<__elided__> : tensor<320x1280xf16>
%cst_581 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_582 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_583 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_584 = arith.constant dense_resource<__elided__> : tensor<320x320x3x3xf16>
%cst_585 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_586 = arith.constant dense_resource<__elided__> : tensor<320x960x1x1xf16>
%cst_587 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_588 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_589 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_590 = arith.constant dense_resource<__elided__> : tensor<320x320x1x1xf16>
%cst_591 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_592 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_593 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_594 = arith.constant dense_resource<__elided__> : tensor<320x320xf16>
%cst_595 = arith.constant dense_resource<__elided__> : tensor<320x320xf16>
%cst_596 = arith.constant dense_resource<__elided__> : tensor<320x320xf16>
%cst_597 = arith.constant dense_resource<__elided__> : tensor<320x320xf16>
%cst_598 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_599 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_600 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_601 = arith.constant dense_resource<__elided__> : tensor<320x320xf16>
%cst_602 = arith.constant dense_resource<__elided__> : tensor<320x768xf16>
%cst_603 = arith.constant dense_resource<__elided__> : tensor<320x768xf16>
%cst_604 = arith.constant dense_resource<__elided__> : tensor<320x320xf16>
%cst_605 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_606 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_607 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_608 = arith.constant dense_resource<__elided__> : tensor<2560x320xf16>
%cst_609 = arith.constant dense_resource<__elided__> : tensor<2560xf16>
%cst_610 = arith.constant dense_resource<__elided__> : tensor<320x1280xf16>
%cst_611 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_612 = arith.constant dense_resource<__elided__> : tensor<320x320x1x1xf16>
%cst_613 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_614 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_615 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_616 = arith.constant dense_resource<__elided__> : tensor<320x640x3x3xf16>
%cst_617 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_618 = arith.constant dense_resource<__elided__> : tensor<320x1280xf16>
%cst_619 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_620 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_621 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_622 = arith.constant dense_resource<__elided__> : tensor<320x320x3x3xf16>
%cst_623 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_624 = arith.constant dense_resource<__elided__> : tensor<320x640x1x1xf16>
%cst_625 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_626 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_627 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_628 = arith.constant dense_resource<__elided__> : tensor<320x320x1x1xf16>
%cst_629 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_630 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_631 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_632 = arith.constant dense_resource<__elided__> : tensor<320x320xf16>
%cst_633 = arith.constant dense_resource<__elided__> : tensor<320x320xf16>
%cst_634 = arith.constant dense_resource<__elided__> : tensor<320x320xf16>
%cst_635 = arith.constant dense_resource<__elided__> : tensor<320x320xf16>
%cst_636 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_637 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_638 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_639 = arith.constant dense_resource<__elided__> : tensor<320x320xf16>
%cst_640 = arith.constant dense_resource<__elided__> : tensor<320x768xf16>
%cst_641 = arith.constant dense_resource<__elided__> : tensor<320x768xf16>
%cst_642 = arith.constant dense_resource<__elided__> : tensor<320x320xf16>
%cst_643 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_644 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_645 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_646 = arith.constant dense_resource<__elided__> : tensor<2560x320xf16>
%cst_647 = arith.constant dense_resource<__elided__> : tensor<2560xf16>
%cst_648 = arith.constant dense_resource<__elided__> : tensor<320x1280xf16>
%cst_649 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_650 = arith.constant dense_resource<__elided__> : tensor<320x320x1x1xf16>
%cst_651 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_652 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_653 = arith.constant dense_resource<__elided__> : tensor<640xf16>
%cst_654 = arith.constant dense_resource<__elided__> : tensor<320x640x3x3xf16>
%cst_655 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_656 = arith.constant dense_resource<__elided__> : tensor<320x1280xf16>
%cst_657 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_658 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_659 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_660 = arith.constant dense_resource<__elided__> : tensor<320x320x3x3xf16>
%cst_661 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_662 = arith.constant dense_resource<__elided__> : tensor<320x640x1x1xf16>
%cst_663 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_664 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_665 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_666 = arith.constant dense_resource<__elided__> : tensor<320x320x1x1xf16>
%cst_667 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_668 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_669 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_670 = arith.constant dense_resource<__elided__> : tensor<320x320xf16>
%cst_671 = arith.constant dense_resource<__elided__> : tensor<320x320xf16>
%cst_672 = arith.constant dense_resource<__elided__> : tensor<320x320xf16>
%cst_673 = arith.constant dense_resource<__elided__> : tensor<320x320xf16>
%cst_674 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_675 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_676 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_677 = arith.constant dense_resource<__elided__> : tensor<320x320xf16>
%cst_678 = arith.constant dense_resource<__elided__> : tensor<320x768xf16>
%cst_679 = arith.constant dense_resource<__elided__> : tensor<320x768xf16>
%cst_680 = arith.constant dense_resource<__elided__> : tensor<320x320xf16>
%cst_681 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_682 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_683 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_684 = arith.constant dense_resource<__elided__> : tensor<2560x320xf16>
%cst_685 = arith.constant dense_resource<__elided__> : tensor<2560xf16>
%cst_686 = arith.constant dense_resource<__elided__> : tensor<320x1280xf16>
%cst_687 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_688 = arith.constant dense_resource<__elided__> : tensor<320x320x1x1xf16>
%cst_689 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_690 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_691 = arith.constant dense_resource<__elided__> : tensor<320xf16>
%cst_692 = arith.constant dense_resource<__elided__> : tensor<4x320x3x3xf16>
%cst_693 = arith.constant dense<[-1.393320e-03, -1.588820e-03, -2.624990e-04, -2.531050e-03]> : tensor<4xf16>
%cst_694 = arith.constant 0.000000e+00 : f16
%cst_695 = arith.constant 1.000000e+00 : f16
%cst_696 = arith.constant -6.550400e+04 : f16
%cst_697 = arith.constant 2.000000e+00 : f16
%cst_698 = arith.constant 5.000000e-01 : f16
%cst_699 = arith.constant 0.000000e+00 : f64
%cst_700 = arith.constant 1.000000e-05 : f64
%cst_701 = arith.constant 0.000000e+00 : f32
%cst_702 = arith.constant 4.096000e+04 : f64
%cst_703 = arith.constant 4.096000e+04 : f32
%cst_704 = arith.constant 3.200000e+02 : f16
%cst_705 = arith.constant 1.024000e+04 : f64
%cst_706 = arith.constant 1.024000e+04 : f32
%cst_707 = arith.constant 2.048000e+04 : f64
%cst_708 = arith.constant 2.048000e+04 : f32
%cst_709 = arith.constant 6.400000e+02 : f16
%cst_710 = arith.constant 5.120000e+03 : f64
%cst_711 = arith.constant 5.120000e+03 : f32
%cst_712 = arith.constant 1.280000e+03 : f16
%cst_713 = arith.constant 2.560000e+03 : f64
%cst_714 = arith.constant 2.560000e+03 : f32
%cst_715 = arith.constant 1.536000e+04 : f64
%cst_716 = arith.constant 1.536000e+04 : f32
%cst_717 = arith.constant 6.144000e+04 : f64
%cst_718 = arith.constant 6.144000e+04 : f32
%cst_719 = arith.constant 3.072000e+04 : f64
%cst_720 = arith.constant 3.072000e+04 : f32
%cst_721 = arith.constant 1.228800e+05 : f64
%cst_722 = arith.constant 1.228800e+05 : f32
%cst_723 = arith.constant 8.192000e+04 : f64
%cst_724 = arith.constant 8.192000e+04 : f32
%c0_i64 = arith.constant 0 : i64
%c2 = arith.constant 2 : index
%0 = tensor.empty() : tensor<2xf16>
%1 = linalg.generic {indexing_maps = [#map0, #map1], iterator_types = ["parallel"]} ins(%arg1 : tensor<1xf16>) outs(%0 : tensor<2xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2xf16>
%2 = tensor.empty() : tensor<160xf32>
%3 = linalg.generic {indexing_maps = [#map1], iterator_types = ["parallel"]} outs(%2 : tensor<160xf32>) {
^bb0(%out: f32):
%4280 = linalg.index 0 : index
%4281 = arith.index_cast %4280 : index to i64
%4282 = arith.sitofp %4281 : i64 to f32
%4283 = arith.addf %4282, %cst_701 : f32
linalg.yield %4283 : f32
} -> tensor<160xf32>
%4 = linalg.generic {indexing_maps = [#map1, #map2, #map1], iterator_types = ["parallel"]} ins(%3, %cst_7 : tensor<160xf32>, tensor<f64>) outs(%2 : tensor<160xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<160xf32>
%5 = linalg.generic {indexing_maps = [#map1, #map2, #map1], iterator_types = ["parallel"]} ins(%4, %cst_6 : tensor<160xf32>, tensor<i64>) outs(%2 : tensor<160xf32>) {
^bb0(%in: f32, %in_1640: i64, %out: f32):
%4280 = arith.sitofp %in_1640 : i64 to f32
%4281 = arith.divf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<160xf32>
%6 = linalg.generic {indexing_maps = [#map1, #map1], iterator_types = ["parallel"]} ins(%5 : tensor<160xf32>) outs(%2 : tensor<160xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.exp %in : f32
linalg.yield %4280 : f32
} -> tensor<160xf32>
%expanded = tensor.expand_shape %1 [[0, 1]] : tensor<2xf16> into tensor<2x1xf16>
%7 = tensor.empty() : tensor<f64>
%8 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%9 = tensor.empty() : tensor<f32>
%10 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%8 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%11 = tensor.empty() : tensor<2x1xf32>
%12 = linalg.generic {indexing_maps = [#map4, #map5], iterator_types = ["parallel", "parallel"]} ins(%10 : tensor<f32>) outs(%11 : tensor<2x1xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x1xf32>
%13 = tensor.empty() : tensor<2x1xf16>
%14 = linalg.generic {indexing_maps = [#map6, #map5], iterator_types = ["parallel", "parallel"]} ins(%expanded : tensor<2x1xf16>) outs(%13 : tensor<2x1xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1xf16>
%15 = linalg.generic {indexing_maps = [#map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%14 : tensor<2x1xf16>) outs(%12 : tensor<2x1xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x1xf32>
%expanded_725 = tensor.expand_shape %6 [[0, 1]] : tensor<160xf32> into tensor<1x160xf32>
%16 = tensor.empty() : tensor<2x160xf32>
%17 = linalg.generic {indexing_maps = [#map6, #map7, #map5], iterator_types = ["parallel", "parallel"]} ins(%15, %expanded_725 : tensor<2x1xf32>, tensor<1x160xf32>) outs(%16 : tensor<2x160xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x160xf32>
%18 = linalg.generic {indexing_maps = [#map5, #map4, #map5], iterator_types = ["parallel", "parallel"]} ins(%17, %cst_5 : tensor<2x160xf32>, tensor<i64>) outs(%16 : tensor<2x160xf32>) {
^bb0(%in: f32, %in_1640: i64, %out: f32):
%4280 = arith.sitofp %in_1640 : i64 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x160xf32>
%19 = linalg.generic {indexing_maps = [#map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%18 : tensor<2x160xf32>) outs(%16 : tensor<2x160xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.sin %in : f32
linalg.yield %4280 : f32
} -> tensor<2x160xf32>
%20 = linalg.generic {indexing_maps = [#map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%18 : tensor<2x160xf32>) outs(%16 : tensor<2x160xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.cos %in : f32
linalg.yield %4280 : f32
} -> tensor<2x160xf32>
%21 = tensor.empty() : tensor<2x320xf32>
%inserted_slice = tensor.insert_slice %19 into %21[0, 0] [2, 160] [1, 1] : tensor<2x160xf32> into tensor<2x320xf32>
%inserted_slice_726 = tensor.insert_slice %20 into %inserted_slice[0, 160] [2, 160] [1, 1] : tensor<2x160xf32> into tensor<2x320xf32>
%extracted_slice = tensor.extract_slice %inserted_slice_726[0, 0] [2, 160] [1, 1] : tensor<2x320xf32> to tensor<2x160xf32>
%inserted_slice_727 = tensor.insert_slice %20 into %21[0, 0] [2, 160] [1, 1] : tensor<2x160xf32> into tensor<2x320xf32>
%inserted_slice_728 = tensor.insert_slice %extracted_slice into %inserted_slice_727[0, 160] [2, 160] [1, 1] : tensor<2x160xf32> into tensor<2x320xf32>
%22 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%23 = tensor.empty() : tensor<f16>
%24 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%22 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%25 = tensor.empty() : tensor<2x320xf16>
%26 = linalg.generic {indexing_maps = [#map4, #map5], iterator_types = ["parallel", "parallel"]} ins(%24 : tensor<f16>) outs(%25 : tensor<2x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x320xf16>
%27 = linalg.generic {indexing_maps = [#map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%inserted_slice_728 : tensor<2x320xf32>) outs(%26 : tensor<2x320xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x320xf16>
%28 = tensor.empty() : tensor<320x1280xf16>
%29 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_8 : tensor<1280x320xf16>) outs(%28 : tensor<320x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<320x1280xf16>
%30 = tensor.empty() : tensor<2x1280xf16>
%31 = linalg.fill ins(%cst_694 : f16) outs(%30 : tensor<2x1280xf16>) -> tensor<2x1280xf16>
%32 = linalg.matmul ins(%27, %29 : tensor<2x320xf16>, tensor<320x1280xf16>) outs(%31 : tensor<2x1280xf16>) -> tensor<2x1280xf16>
%33 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_9, %32 : tensor<1280xf16>, tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280xf16>
%34 = linalg.generic {indexing_maps = [#map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%33 : tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280xf16>
%35 = linalg.generic {indexing_maps = [#map5, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%34, %33 : tensor<2x1280xf16>, tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280xf16>
%36 = tensor.empty() : tensor<1280x1280xf16>
%37 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_10 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%38 = linalg.fill ins(%cst_694 : f16) outs(%30 : tensor<2x1280xf16>) -> tensor<2x1280xf16>
%39 = linalg.matmul ins(%35, %37 : tensor<2x1280xf16>, tensor<1280x1280xf16>) outs(%38 : tensor<2x1280xf16>) -> tensor<2x1280xf16>
%40 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_11, %39 : tensor<1280xf16>, tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280xf16>
%padded = tensor.pad %arg0 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x4x64x64xf16> to tensor<2x4x66x66xf16>
%41 = tensor.empty() : tensor<2x320x64x64xf16>
%42 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_13 : tensor<320xf16>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x320x64x64xf16>
%43 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded, %cst_12 : tensor<2x4x66x66xf16>, tensor<320x4x3x3xf16>) outs(%42 : tensor<2x320x64x64xf16>) -> tensor<2x320x64x64xf16>
%collapsed = tensor.collapse_shape %43 [[0], [1], [2, 3]] : tensor<2x320x64x64xf16> into tensor<2x320x4096xf16>
%expanded_729 = tensor.expand_shape %collapsed [[0], [1, 2], [3]] : tensor<2x320x4096xf16> into tensor<2x32x10x4096xf16>
%44 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%45 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%44 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%46 = tensor.empty() : tensor<2x32x10x4096xf32>
%47 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%45 : tensor<f32>) outs(%46 : tensor<2x32x10x4096xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x10x4096xf32>
%48 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_729 : tensor<2x32x10x4096xf16>) outs(%47 : tensor<2x32x10x4096xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x10x4096xf32>
%49 = tensor.empty() : tensor<2x32x10x4096xf64>
%50 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%48 : tensor<2x32x10x4096xf32>) outs(%49 : tensor<2x32x10x4096xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x10x4096xf64>
%51 = tensor.empty() : tensor<2x32x1x1xf64>
%52 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%53 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%50 : tensor<2x32x10x4096xf64>) outs(%52 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%54 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%53 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_702 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%55 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%50, %54 : tensor<2x32x10x4096xf64>, tensor<2x32x1x1xf64>) outs(%49 : tensor<2x32x10x4096xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x10x4096xf64>
%56 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%55 : tensor<2x32x10x4096xf64>) outs(%49 : tensor<2x32x10x4096xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x10x4096xf64>
%57 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%58 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%56 : tensor<2x32x10x4096xf64>) outs(%57 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%59 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%58 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_702 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%60 = tensor.empty() : tensor<2x32x1x1xf32>
%61 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%59 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%62 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%63 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%48 : tensor<2x32x10x4096xf32>) outs(%62 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%64 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%63 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_703 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%65 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%61, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%66 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%65 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%67 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_729, %64 : tensor<2x32x10x4096xf16>, tensor<2x32x1x1xf32>) outs(%46 : tensor<2x32x10x4096xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x10x4096xf32>
%68 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%67, %66 : tensor<2x32x10x4096xf32>, tensor<2x32x1x1xf32>) outs(%46 : tensor<2x32x10x4096xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x10x4096xf32>
%collapsed_730 = tensor.collapse_shape %68 [[0], [1, 2], [3]] : tensor<2x32x10x4096xf32> into tensor<2x320x4096xf32>
%expanded_731 = tensor.expand_shape %collapsed_730 [[0], [1], [2, 3]] : tensor<2x320x4096xf32> into tensor<2x320x64x64xf32>
%expanded_732 = tensor.expand_shape %cst_14 [[0, 1, 2]] : tensor<320xf16> into tensor<320x1x1xf16>
%69 = tensor.empty() : tensor<2x320x64x64xf32>
%70 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_731, %expanded_732 : tensor<2x320x64x64xf32>, tensor<320x1x1xf16>) outs(%69 : tensor<2x320x64x64xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x320x64x64xf32>
%expanded_733 = tensor.expand_shape %cst_15 [[0, 1, 2]] : tensor<320xf16> into tensor<320x1x1xf16>
%71 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%70, %expanded_733 : tensor<2x320x64x64xf32>, tensor<320x1x1xf16>) outs(%69 : tensor<2x320x64x64xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x320x64x64xf32>
%72 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%73 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%72 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%74 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%73 : tensor<f16>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x320x64x64xf16>
%75 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%71 : tensor<2x320x64x64xf32>) outs(%74 : tensor<2x320x64x64xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x320x64x64xf16>
%76 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%75 : tensor<2x320x64x64xf16>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x320x64x64xf16>
%77 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%76, %75 : tensor<2x320x64x64xf16>, tensor<2x320x64x64xf16>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x320x64x64xf16>
%padded_734 = tensor.pad %77 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x320x64x64xf16> to tensor<2x320x66x66xf16>
%78 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_17 : tensor<320xf16>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x320x64x64xf16>
%79 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_734, %cst_16 : tensor<2x320x66x66xf16>, tensor<320x320x3x3xf16>) outs(%78 : tensor<2x320x64x64xf16>) -> tensor<2x320x64x64xf16>
%80 = linalg.generic {indexing_maps = [#map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%40 : tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280xf16>
%81 = linalg.generic {indexing_maps = [#map5, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%80, %40 : tensor<2x1280xf16>, tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280xf16>
%82 = tensor.empty() : tensor<1280x320xf16>
%83 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_18 : tensor<320x1280xf16>) outs(%82 : tensor<1280x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x320xf16>
%84 = linalg.fill ins(%cst_694 : f16) outs(%25 : tensor<2x320xf16>) -> tensor<2x320xf16>
%85 = linalg.matmul ins(%81, %83 : tensor<2x1280xf16>, tensor<1280x320xf16>) outs(%84 : tensor<2x320xf16>) -> tensor<2x320xf16>
%86 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_19, %85 : tensor<320xf16>, tensor<2x320xf16>) outs(%25 : tensor<2x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x320xf16>
%expanded_735 = tensor.expand_shape %86 [[0], [1, 2, 3]] : tensor<2x320xf16> into tensor<2x320x1x1xf16>
%87 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%79, %expanded_735 : tensor<2x320x64x64xf16>, tensor<2x320x1x1xf16>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x320x64x64xf16>
%collapsed_736 = tensor.collapse_shape %87 [[0], [1], [2, 3]] : tensor<2x320x64x64xf16> into tensor<2x320x4096xf16>
%expanded_737 = tensor.expand_shape %collapsed_736 [[0], [1, 2], [3]] : tensor<2x320x4096xf16> into tensor<2x32x10x4096xf16>
%88 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%89 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%88 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%90 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%89 : tensor<f32>) outs(%46 : tensor<2x32x10x4096xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x10x4096xf32>
%91 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_737 : tensor<2x32x10x4096xf16>) outs(%90 : tensor<2x32x10x4096xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x10x4096xf32>
%92 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%91 : tensor<2x32x10x4096xf32>) outs(%49 : tensor<2x32x10x4096xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x10x4096xf64>
%93 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%94 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%92 : tensor<2x32x10x4096xf64>) outs(%93 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%95 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%94 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_702 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%96 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%92, %95 : tensor<2x32x10x4096xf64>, tensor<2x32x1x1xf64>) outs(%49 : tensor<2x32x10x4096xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x10x4096xf64>
%97 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%96 : tensor<2x32x10x4096xf64>) outs(%49 : tensor<2x32x10x4096xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x10x4096xf64>
%98 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%99 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%97 : tensor<2x32x10x4096xf64>) outs(%98 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%100 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%99 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_702 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%101 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%100 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%102 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%103 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%91 : tensor<2x32x10x4096xf32>) outs(%102 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%104 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%103 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_703 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%105 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%101, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%106 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%105 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%107 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_737, %104 : tensor<2x32x10x4096xf16>, tensor<2x32x1x1xf32>) outs(%46 : tensor<2x32x10x4096xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x10x4096xf32>
%108 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%107, %106 : tensor<2x32x10x4096xf32>, tensor<2x32x1x1xf32>) outs(%46 : tensor<2x32x10x4096xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x10x4096xf32>
%collapsed_738 = tensor.collapse_shape %108 [[0], [1, 2], [3]] : tensor<2x32x10x4096xf32> into tensor<2x320x4096xf32>
%expanded_739 = tensor.expand_shape %collapsed_738 [[0], [1], [2, 3]] : tensor<2x320x4096xf32> into tensor<2x320x64x64xf32>
%expanded_740 = tensor.expand_shape %cst_20 [[0, 1, 2]] : tensor<320xf16> into tensor<320x1x1xf16>
%109 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_739, %expanded_740 : tensor<2x320x64x64xf32>, tensor<320x1x1xf16>) outs(%69 : tensor<2x320x64x64xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x320x64x64xf32>
%expanded_741 = tensor.expand_shape %cst_21 [[0, 1, 2]] : tensor<320xf16> into tensor<320x1x1xf16>
%110 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%109, %expanded_741 : tensor<2x320x64x64xf32>, tensor<320x1x1xf16>) outs(%69 : tensor<2x320x64x64xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x320x64x64xf32>
%111 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%112 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%111 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%113 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%112 : tensor<f16>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x320x64x64xf16>
%114 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%110 : tensor<2x320x64x64xf32>) outs(%113 : tensor<2x320x64x64xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x320x64x64xf16>
%115 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%114 : tensor<2x320x64x64xf16>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x320x64x64xf16>
%116 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%115, %114 : tensor<2x320x64x64xf16>, tensor<2x320x64x64xf16>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x320x64x64xf16>
%padded_742 = tensor.pad %116 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x320x64x64xf16> to tensor<2x320x66x66xf16>
%117 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_23 : tensor<320xf16>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x320x64x64xf16>
%118 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_742, %cst_22 : tensor<2x320x66x66xf16>, tensor<320x320x3x3xf16>) outs(%117 : tensor<2x320x64x64xf16>) -> tensor<2x320x64x64xf16>
%119 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%43, %118 : tensor<2x320x64x64xf16>, tensor<2x320x64x64xf16>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x320x64x64xf16>
%120 = linalg.generic {indexing_maps = [#map11, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%119, %cst_3 : tensor<2x320x64x64xf16>, tensor<f64>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.divf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x320x64x64xf16>
%collapsed_743 = tensor.collapse_shape %120 [[0], [1], [2, 3]] : tensor<2x320x64x64xf16> into tensor<2x320x4096xf16>
%expanded_744 = tensor.expand_shape %collapsed_743 [[0], [1, 2], [3]] : tensor<2x320x4096xf16> into tensor<2x32x10x4096xf16>
%121 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%122 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%121 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%123 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%122 : tensor<f32>) outs(%46 : tensor<2x32x10x4096xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x10x4096xf32>
%124 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_744 : tensor<2x32x10x4096xf16>) outs(%123 : tensor<2x32x10x4096xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x10x4096xf32>
%125 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%124 : tensor<2x32x10x4096xf32>) outs(%49 : tensor<2x32x10x4096xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x10x4096xf64>
%126 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%127 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%125 : tensor<2x32x10x4096xf64>) outs(%126 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%128 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%127 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_702 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%129 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%125, %128 : tensor<2x32x10x4096xf64>, tensor<2x32x1x1xf64>) outs(%49 : tensor<2x32x10x4096xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x10x4096xf64>
%130 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%129 : tensor<2x32x10x4096xf64>) outs(%49 : tensor<2x32x10x4096xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x10x4096xf64>
%131 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%132 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%130 : tensor<2x32x10x4096xf64>) outs(%131 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%133 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%132 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_702 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%134 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%133 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%135 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%136 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%124 : tensor<2x32x10x4096xf32>) outs(%135 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%137 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%136 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_703 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%138 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%134, %cst_2 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%139 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%138 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%140 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_744, %137 : tensor<2x32x10x4096xf16>, tensor<2x32x1x1xf32>) outs(%46 : tensor<2x32x10x4096xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x10x4096xf32>
%141 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%140, %139 : tensor<2x32x10x4096xf32>, tensor<2x32x1x1xf32>) outs(%46 : tensor<2x32x10x4096xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x10x4096xf32>
%collapsed_745 = tensor.collapse_shape %141 [[0], [1, 2], [3]] : tensor<2x32x10x4096xf32> into tensor<2x320x4096xf32>
%expanded_746 = tensor.expand_shape %collapsed_745 [[0], [1], [2, 3]] : tensor<2x320x4096xf32> into tensor<2x320x64x64xf32>
%expanded_747 = tensor.expand_shape %cst_24 [[0, 1, 2]] : tensor<320xf16> into tensor<320x1x1xf16>
%142 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_746, %expanded_747 : tensor<2x320x64x64xf32>, tensor<320x1x1xf16>) outs(%69 : tensor<2x320x64x64xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x320x64x64xf32>
%expanded_748 = tensor.expand_shape %cst_25 [[0, 1, 2]] : tensor<320xf16> into tensor<320x1x1xf16>
%143 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%142, %expanded_748 : tensor<2x320x64x64xf32>, tensor<320x1x1xf16>) outs(%69 : tensor<2x320x64x64xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x320x64x64xf32>
%144 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%145 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%144 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%146 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%145 : tensor<f16>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x320x64x64xf16>
%147 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%143 : tensor<2x320x64x64xf32>) outs(%146 : tensor<2x320x64x64xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x320x64x64xf16>
%148 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_27 : tensor<320xf16>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x320x64x64xf16>
%149 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%147, %cst_26 : tensor<2x320x64x64xf16>, tensor<320x320x1x1xf16>) outs(%148 : tensor<2x320x64x64xf16>) -> tensor<2x320x64x64xf16>
%150 = tensor.empty() : tensor<2x64x64x320xf16>
%151 = linalg.generic {indexing_maps = [#map11, #map15], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%149 : tensor<2x320x64x64xf16>) outs(%150 : tensor<2x64x64x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x64x64x320xf16>
%collapsed_749 = tensor.collapse_shape %151 [[0], [1, 2], [3]] : tensor<2x64x64x320xf16> into tensor<2x4096x320xf16>
%152 = tensor.empty() : tensor<2x4096x1xf16>
%153 = linalg.fill ins(%cst_694 : f16) outs(%152 : tensor<2x4096x1xf16>) -> tensor<2x4096x1xf16>
%154 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%collapsed_749 : tensor<2x4096x320xf16>) outs(%153 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1xf16>
%155 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%154 : tensor<2x4096x1xf16>) outs(%152 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_704 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1xf16>
%156 = tensor.empty() : tensor<2x4096x320xf16>
%157 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%155 : tensor<2x4096x1xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x4096x320xf16>
%158 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%collapsed_749, %157 : tensor<2x4096x320xf16>, tensor<2x4096x320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%159 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%158 : tensor<2x4096x320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.mulf %in, %in : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%160 = linalg.fill ins(%cst_694 : f16) outs(%152 : tensor<2x4096x1xf16>) -> tensor<2x4096x1xf16>
%161 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%159 : tensor<2x4096x320xf16>) outs(%160 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1xf16>
%162 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%161 : tensor<2x4096x1xf16>) outs(%152 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_704 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1xf16>
%163 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%162 : tensor<2x4096x1xf16>) outs(%152 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.truncf %cst_700 : f64 to f16
%4281 = arith.addf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x4096x1xf16>
%164 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%163 : tensor<2x4096x1xf16>) outs(%152 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.rsqrt %in : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1xf16>
%165 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%164 : tensor<2x4096x1xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x4096x320xf16>
%166 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%158, %165 : tensor<2x4096x320xf16>, tensor<2x4096x320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%167 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%166, %cst_28 : tensor<2x4096x320xf16>, tensor<320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%168 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%167, %cst_29 : tensor<2x4096x320xf16>, tensor<320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%169 = tensor.empty() : tensor<320x320xf16>
%170 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_30 : tensor<320x320xf16>) outs(%169 : tensor<320x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<320x320xf16>
%collapsed_750 = tensor.collapse_shape %168 [[0, 1], [2]] : tensor<2x4096x320xf16> into tensor<8192x320xf16>
%171 = tensor.empty() : tensor<8192x320xf16>
%172 = linalg.fill ins(%cst_694 : f16) outs(%171 : tensor<8192x320xf16>) -> tensor<8192x320xf16>
%173 = linalg.matmul ins(%collapsed_750, %170 : tensor<8192x320xf16>, tensor<320x320xf16>) outs(%172 : tensor<8192x320xf16>) -> tensor<8192x320xf16>
%174 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_31 : tensor<320x320xf16>) outs(%169 : tensor<320x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<320x320xf16>
%175 = linalg.fill ins(%cst_694 : f16) outs(%171 : tensor<8192x320xf16>) -> tensor<8192x320xf16>
%176 = linalg.matmul ins(%collapsed_750, %174 : tensor<8192x320xf16>, tensor<320x320xf16>) outs(%175 : tensor<8192x320xf16>) -> tensor<8192x320xf16>
%177 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_32 : tensor<320x320xf16>) outs(%169 : tensor<320x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<320x320xf16>
%178 = linalg.fill ins(%cst_694 : f16) outs(%171 : tensor<8192x320xf16>) -> tensor<8192x320xf16>
%179 = linalg.matmul ins(%collapsed_750, %177 : tensor<8192x320xf16>, tensor<320x320xf16>) outs(%178 : tensor<8192x320xf16>) -> tensor<8192x320xf16>
%expanded_751 = tensor.expand_shape %173 [[0, 1], [2, 3]] : tensor<8192x320xf16> into tensor<2x4096x8x40xf16>
%180 = tensor.empty() : tensor<2x8x4096x40xf16>
%181 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_751 : tensor<2x4096x8x40xf16>) outs(%180 : tensor<2x8x4096x40xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x4096x40xf16>
%collapsed_752 = tensor.collapse_shape %181 [[0, 1], [2], [3]] : tensor<2x8x4096x40xf16> into tensor<16x4096x40xf16>
%expanded_753 = tensor.expand_shape %176 [[0, 1], [2, 3]] : tensor<8192x320xf16> into tensor<2x4096x8x40xf16>
%182 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_753 : tensor<2x4096x8x40xf16>) outs(%180 : tensor<2x8x4096x40xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x4096x40xf16>
%collapsed_754 = tensor.collapse_shape %182 [[0, 1], [2], [3]] : tensor<2x8x4096x40xf16> into tensor<16x4096x40xf16>
%expanded_755 = tensor.expand_shape %179 [[0, 1], [2, 3]] : tensor<8192x320xf16> into tensor<2x4096x8x40xf16>
%183 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_755 : tensor<2x4096x8x40xf16>) outs(%180 : tensor<2x8x4096x40xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x4096x40xf16>
%collapsed_756 = tensor.collapse_shape %183 [[0, 1], [2], [3]] : tensor<2x8x4096x40xf16> into tensor<16x4096x40xf16>
%184 = tensor.empty() : tensor<16x40x4096xf16>
%185 = linalg.generic {indexing_maps = [#map16, #map20], iterator_types = ["parallel", "parallel", "parallel"]} ins(%collapsed_754 : tensor<16x4096x40xf16>) outs(%184 : tensor<16x40x4096xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<16x40x4096xf16>
%186 = tensor.empty() : tensor<16x4096x4096xf16>
%187 = linalg.fill ins(%cst_694 : f16) outs(%186 : tensor<16x4096x4096xf16>) -> tensor<16x4096x4096xf16>
%188 = linalg.batch_matmul ins(%collapsed_752, %185 : tensor<16x4096x40xf16>, tensor<16x40x4096xf16>) outs(%187 : tensor<16x4096x4096xf16>) -> tensor<16x4096x4096xf16>
%189 = linalg.generic {indexing_maps = [#map16, #map21, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%188, %cst_1 : tensor<16x4096x4096xf16>, tensor<f64>) outs(%186 : tensor<16x4096x4096xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.mulf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<16x4096x4096xf16>
%190 = tensor.empty() : tensor<16x4096x1xi64>
%191 = linalg.fill ins(%c0_i64 : i64) outs(%190 : tensor<16x4096x1xi64>) -> tensor<16x4096x1xi64>
%192 = tensor.empty() : tensor<16x4096x1xf16>
%193 = linalg.fill ins(%cst_696 : f16) outs(%192 : tensor<16x4096x1xf16>) -> tensor<16x4096x1xf16>
%194:2 = linalg.generic {indexing_maps = [#map16, #map17, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%189 : tensor<16x4096x4096xf16>) outs(%193, %191 : tensor<16x4096x1xf16>, tensor<16x4096x1xi64>) {
^bb0(%in: f16, %out: f16, %out_1640: i64):
%4280 = linalg.index 2 : index
%4281 = arith.index_cast %4280 : index to i64
%4282 = arith.maxf %in, %out : f16
%4283 = arith.cmpf ogt, %in, %out : f16
%4284 = arith.select %4283, %4281, %out_1640 : i64
linalg.yield %4282, %4284 : f16, i64
} -> (tensor<16x4096x1xf16>, tensor<16x4096x1xi64>)
%195 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%189, %194#0 : tensor<16x4096x4096xf16>, tensor<16x4096x1xf16>) outs(%186 : tensor<16x4096x4096xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x4096x4096xf16>
%196 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%195 : tensor<16x4096x4096xf16>) outs(%186 : tensor<16x4096x4096xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.exp %in : f16
linalg.yield %4280 : f16
} -> tensor<16x4096x4096xf16>
%197 = linalg.fill ins(%cst_694 : f16) outs(%192 : tensor<16x4096x1xf16>) -> tensor<16x4096x1xf16>
%198 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%196 : tensor<16x4096x4096xf16>) outs(%197 : tensor<16x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<16x4096x1xf16>
%199 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%196, %198 : tensor<16x4096x4096xf16>, tensor<16x4096x1xf16>) outs(%186 : tensor<16x4096x4096xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.divf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x4096x4096xf16>
%200 = tensor.empty() : tensor<16x4096x40xf16>
%201 = linalg.fill ins(%cst_694 : f16) outs(%200 : tensor<16x4096x40xf16>) -> tensor<16x4096x40xf16>
%202 = linalg.batch_matmul ins(%199, %collapsed_756 : tensor<16x4096x4096xf16>, tensor<16x4096x40xf16>) outs(%201 : tensor<16x4096x40xf16>) -> tensor<16x4096x40xf16>
%expanded_757 = tensor.expand_shape %202 [[0, 1], [2], [3]] : tensor<16x4096x40xf16> into tensor<2x8x4096x40xf16>
%203 = tensor.empty() : tensor<2x4096x8x40xf16>
%204 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_757 : tensor<2x8x4096x40xf16>) outs(%203 : tensor<2x4096x8x40xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x4096x8x40xf16>
%205 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_33 : tensor<320x320xf16>) outs(%169 : tensor<320x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<320x320xf16>
%collapsed_758 = tensor.collapse_shape %204 [[0, 1], [2, 3]] : tensor<2x4096x8x40xf16> into tensor<8192x320xf16>
%206 = linalg.fill ins(%cst_694 : f16) outs(%171 : tensor<8192x320xf16>) -> tensor<8192x320xf16>
%207 = linalg.matmul ins(%collapsed_758, %205 : tensor<8192x320xf16>, tensor<320x320xf16>) outs(%206 : tensor<8192x320xf16>) -> tensor<8192x320xf16>
%208 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_34, %207 : tensor<320xf16>, tensor<8192x320xf16>) outs(%171 : tensor<8192x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<8192x320xf16>
%expanded_759 = tensor.expand_shape %208 [[0, 1], [2]] : tensor<8192x320xf16> into tensor<2x4096x320xf16>
%209 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%expanded_759, %collapsed_749 : tensor<2x4096x320xf16>, tensor<2x4096x320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%210 = linalg.fill ins(%cst_694 : f16) outs(%152 : tensor<2x4096x1xf16>) -> tensor<2x4096x1xf16>
%211 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%209 : tensor<2x4096x320xf16>) outs(%210 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1xf16>
%212 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%211 : tensor<2x4096x1xf16>) outs(%152 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_704 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1xf16>
%213 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%212 : tensor<2x4096x1xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x4096x320xf16>
%214 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%209, %213 : tensor<2x4096x320xf16>, tensor<2x4096x320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%215 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%214 : tensor<2x4096x320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.mulf %in, %in : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%216 = linalg.fill ins(%cst_694 : f16) outs(%152 : tensor<2x4096x1xf16>) -> tensor<2x4096x1xf16>
%217 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%215 : tensor<2x4096x320xf16>) outs(%216 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1xf16>
%218 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%217 : tensor<2x4096x1xf16>) outs(%152 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_704 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1xf16>
%219 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%218 : tensor<2x4096x1xf16>) outs(%152 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.truncf %cst_700 : f64 to f16
%4281 = arith.addf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x4096x1xf16>
%220 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%219 : tensor<2x4096x1xf16>) outs(%152 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.rsqrt %in : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1xf16>
%221 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%220 : tensor<2x4096x1xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x4096x320xf16>
%222 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%214, %221 : tensor<2x4096x320xf16>, tensor<2x4096x320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%223 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%222, %cst_35 : tensor<2x4096x320xf16>, tensor<320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%224 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%223, %cst_36 : tensor<2x4096x320xf16>, tensor<320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%225 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_37 : tensor<320x320xf16>) outs(%169 : tensor<320x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<320x320xf16>
%collapsed_760 = tensor.collapse_shape %224 [[0, 1], [2]] : tensor<2x4096x320xf16> into tensor<8192x320xf16>
%226 = linalg.fill ins(%cst_694 : f16) outs(%171 : tensor<8192x320xf16>) -> tensor<8192x320xf16>
%227 = linalg.matmul ins(%collapsed_760, %225 : tensor<8192x320xf16>, tensor<320x320xf16>) outs(%226 : tensor<8192x320xf16>) -> tensor<8192x320xf16>
%228 = tensor.empty() : tensor<768x320xf16>
%229 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_38 : tensor<320x768xf16>) outs(%228 : tensor<768x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<768x320xf16>
%collapsed_761 = tensor.collapse_shape %arg2 [[0, 1], [2]] : tensor<2x77x768xf16> into tensor<154x768xf16>
%230 = tensor.empty() : tensor<154x320xf16>
%231 = linalg.fill ins(%cst_694 : f16) outs(%230 : tensor<154x320xf16>) -> tensor<154x320xf16>
%232 = linalg.matmul ins(%collapsed_761, %229 : tensor<154x768xf16>, tensor<768x320xf16>) outs(%231 : tensor<154x320xf16>) -> tensor<154x320xf16>
%233 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_39 : tensor<320x768xf16>) outs(%228 : tensor<768x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<768x320xf16>
%234 = linalg.fill ins(%cst_694 : f16) outs(%230 : tensor<154x320xf16>) -> tensor<154x320xf16>
%235 = linalg.matmul ins(%collapsed_761, %233 : tensor<154x768xf16>, tensor<768x320xf16>) outs(%234 : tensor<154x320xf16>) -> tensor<154x320xf16>
%expanded_762 = tensor.expand_shape %227 [[0, 1], [2, 3]] : tensor<8192x320xf16> into tensor<2x4096x8x40xf16>
%236 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_762 : tensor<2x4096x8x40xf16>) outs(%180 : tensor<2x8x4096x40xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x4096x40xf16>
%collapsed_763 = tensor.collapse_shape %236 [[0, 1], [2], [3]] : tensor<2x8x4096x40xf16> into tensor<16x4096x40xf16>
%expanded_764 = tensor.expand_shape %232 [[0, 1], [2, 3]] : tensor<154x320xf16> into tensor<2x77x8x40xf16>
%237 = tensor.empty() : tensor<2x8x77x40xf16>
%238 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_764 : tensor<2x77x8x40xf16>) outs(%237 : tensor<2x8x77x40xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x77x40xf16>
%collapsed_765 = tensor.collapse_shape %238 [[0, 1], [2], [3]] : tensor<2x8x77x40xf16> into tensor<16x77x40xf16>
%expanded_766 = tensor.expand_shape %235 [[0, 1], [2, 3]] : tensor<154x320xf16> into tensor<2x77x8x40xf16>
%239 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_766 : tensor<2x77x8x40xf16>) outs(%237 : tensor<2x8x77x40xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x77x40xf16>
%collapsed_767 = tensor.collapse_shape %239 [[0, 1], [2], [3]] : tensor<2x8x77x40xf16> into tensor<16x77x40xf16>
%240 = tensor.empty() : tensor<16x40x77xf16>
%241 = linalg.generic {indexing_maps = [#map16, #map20], iterator_types = ["parallel", "parallel", "parallel"]} ins(%collapsed_765 : tensor<16x77x40xf16>) outs(%240 : tensor<16x40x77xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<16x40x77xf16>
%242 = tensor.empty() : tensor<16x4096x77xf16>
%243 = linalg.fill ins(%cst_694 : f16) outs(%242 : tensor<16x4096x77xf16>) -> tensor<16x4096x77xf16>
%244 = linalg.batch_matmul ins(%collapsed_763, %241 : tensor<16x4096x40xf16>, tensor<16x40x77xf16>) outs(%243 : tensor<16x4096x77xf16>) -> tensor<16x4096x77xf16>
%245 = linalg.generic {indexing_maps = [#map16, #map21, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%244, %cst_1 : tensor<16x4096x77xf16>, tensor<f64>) outs(%242 : tensor<16x4096x77xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.mulf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<16x4096x77xf16>
%246 = linalg.fill ins(%c0_i64 : i64) outs(%190 : tensor<16x4096x1xi64>) -> tensor<16x4096x1xi64>
%247 = linalg.fill ins(%cst_696 : f16) outs(%192 : tensor<16x4096x1xf16>) -> tensor<16x4096x1xf16>
%248:2 = linalg.generic {indexing_maps = [#map16, #map17, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%245 : tensor<16x4096x77xf16>) outs(%247, %246 : tensor<16x4096x1xf16>, tensor<16x4096x1xi64>) {
^bb0(%in: f16, %out: f16, %out_1640: i64):
%4280 = linalg.index 2 : index
%4281 = arith.index_cast %4280 : index to i64
%4282 = arith.maxf %in, %out : f16
%4283 = arith.cmpf ogt, %in, %out : f16
%4284 = arith.select %4283, %4281, %out_1640 : i64
linalg.yield %4282, %4284 : f16, i64
} -> (tensor<16x4096x1xf16>, tensor<16x4096x1xi64>)
%249 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%245, %248#0 : tensor<16x4096x77xf16>, tensor<16x4096x1xf16>) outs(%242 : tensor<16x4096x77xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x4096x77xf16>
%250 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%249 : tensor<16x4096x77xf16>) outs(%242 : tensor<16x4096x77xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.exp %in : f16
linalg.yield %4280 : f16
} -> tensor<16x4096x77xf16>
%251 = linalg.fill ins(%cst_694 : f16) outs(%192 : tensor<16x4096x1xf16>) -> tensor<16x4096x1xf16>
%252 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%250 : tensor<16x4096x77xf16>) outs(%251 : tensor<16x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<16x4096x1xf16>
%253 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%250, %252 : tensor<16x4096x77xf16>, tensor<16x4096x1xf16>) outs(%242 : tensor<16x4096x77xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.divf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x4096x77xf16>
%254 = linalg.fill ins(%cst_694 : f16) outs(%200 : tensor<16x4096x40xf16>) -> tensor<16x4096x40xf16>
%255 = linalg.batch_matmul ins(%253, %collapsed_767 : tensor<16x4096x77xf16>, tensor<16x77x40xf16>) outs(%254 : tensor<16x4096x40xf16>) -> tensor<16x4096x40xf16>
%expanded_768 = tensor.expand_shape %255 [[0, 1], [2], [3]] : tensor<16x4096x40xf16> into tensor<2x8x4096x40xf16>
%256 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_768 : tensor<2x8x4096x40xf16>) outs(%203 : tensor<2x4096x8x40xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x4096x8x40xf16>
%257 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_40 : tensor<320x320xf16>) outs(%169 : tensor<320x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<320x320xf16>
%collapsed_769 = tensor.collapse_shape %256 [[0, 1], [2, 3]] : tensor<2x4096x8x40xf16> into tensor<8192x320xf16>
%258 = linalg.fill ins(%cst_694 : f16) outs(%171 : tensor<8192x320xf16>) -> tensor<8192x320xf16>
%259 = linalg.matmul ins(%collapsed_769, %257 : tensor<8192x320xf16>, tensor<320x320xf16>) outs(%258 : tensor<8192x320xf16>) -> tensor<8192x320xf16>
%260 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_41, %259 : tensor<320xf16>, tensor<8192x320xf16>) outs(%171 : tensor<8192x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<8192x320xf16>
%expanded_770 = tensor.expand_shape %260 [[0, 1], [2]] : tensor<8192x320xf16> into tensor<2x4096x320xf16>
%261 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%expanded_770, %209 : tensor<2x4096x320xf16>, tensor<2x4096x320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%262 = linalg.fill ins(%cst_694 : f16) outs(%152 : tensor<2x4096x1xf16>) -> tensor<2x4096x1xf16>
%263 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%261 : tensor<2x4096x320xf16>) outs(%262 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1xf16>
%264 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%263 : tensor<2x4096x1xf16>) outs(%152 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_704 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1xf16>
%265 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%264 : tensor<2x4096x1xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x4096x320xf16>
%266 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%261, %265 : tensor<2x4096x320xf16>, tensor<2x4096x320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%267 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%266 : tensor<2x4096x320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.mulf %in, %in : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%268 = linalg.fill ins(%cst_694 : f16) outs(%152 : tensor<2x4096x1xf16>) -> tensor<2x4096x1xf16>
%269 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%267 : tensor<2x4096x320xf16>) outs(%268 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1xf16>
%270 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%269 : tensor<2x4096x1xf16>) outs(%152 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_704 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1xf16>
%271 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%270 : tensor<2x4096x1xf16>) outs(%152 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.truncf %cst_700 : f64 to f16
%4281 = arith.addf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x4096x1xf16>
%272 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%271 : tensor<2x4096x1xf16>) outs(%152 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.rsqrt %in : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1xf16>
%273 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%272 : tensor<2x4096x1xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x4096x320xf16>
%274 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%266, %273 : tensor<2x4096x320xf16>, tensor<2x4096x320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%275 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%274, %cst_42 : tensor<2x4096x320xf16>, tensor<320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%276 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%275, %cst_43 : tensor<2x4096x320xf16>, tensor<320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%277 = tensor.empty() : tensor<320x2560xf16>
%278 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_44 : tensor<2560x320xf16>) outs(%277 : tensor<320x2560xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<320x2560xf16>
%collapsed_771 = tensor.collapse_shape %276 [[0, 1], [2]] : tensor<2x4096x320xf16> into tensor<8192x320xf16>
%279 = tensor.empty() : tensor<8192x2560xf16>
%280 = linalg.fill ins(%cst_694 : f16) outs(%279 : tensor<8192x2560xf16>) -> tensor<8192x2560xf16>
%281 = linalg.matmul ins(%collapsed_771, %278 : tensor<8192x320xf16>, tensor<320x2560xf16>) outs(%280 : tensor<8192x2560xf16>) -> tensor<8192x2560xf16>
%282 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_45, %281 : tensor<2560xf16>, tensor<8192x2560xf16>) outs(%279 : tensor<8192x2560xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<8192x2560xf16>
%expanded_772 = tensor.expand_shape %282 [[0, 1], [2]] : tensor<8192x2560xf16> into tensor<2x4096x2560xf16>
%extracted_slice_773 = tensor.extract_slice %expanded_772[0, 0, 0] [2, 4096, 1280] [1, 1, 1] : tensor<2x4096x2560xf16> to tensor<2x4096x1280xf16>
%extracted_slice_774 = tensor.extract_slice %expanded_772[0, 0, 1280] [2, 4096, 1280] [1, 1, 1] : tensor<2x4096x2560xf16> to tensor<2x4096x1280xf16>
%283 = tensor.empty() : tensor<2x4096x1280xf16>
%284 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%extracted_slice_774 : tensor<2x4096x1280xf16>) outs(%283 : tensor<2x4096x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.sqrt %cst_697 : f16
%4281 = arith.divf %in, %4280 : f16
%4282 = math.erf %4281 : f16
%4283 = arith.addf %4282, %cst_695 : f16
%4284 = arith.mulf %4283, %cst_698 : f16
%4285 = arith.mulf %in, %4284 : f16
linalg.yield %4285 : f16
} -> tensor<2x4096x1280xf16>
%285 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%extracted_slice_773, %284 : tensor<2x4096x1280xf16>, tensor<2x4096x1280xf16>) outs(%283 : tensor<2x4096x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1280xf16>
%286 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_46 : tensor<320x1280xf16>) outs(%82 : tensor<1280x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x320xf16>
%collapsed_775 = tensor.collapse_shape %285 [[0, 1], [2]] : tensor<2x4096x1280xf16> into tensor<8192x1280xf16>
%287 = linalg.fill ins(%cst_694 : f16) outs(%171 : tensor<8192x320xf16>) -> tensor<8192x320xf16>
%288 = linalg.matmul ins(%collapsed_775, %286 : tensor<8192x1280xf16>, tensor<1280x320xf16>) outs(%287 : tensor<8192x320xf16>) -> tensor<8192x320xf16>
%289 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_47, %288 : tensor<320xf16>, tensor<8192x320xf16>) outs(%171 : tensor<8192x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<8192x320xf16>
%expanded_776 = tensor.expand_shape %289 [[0, 1], [2]] : tensor<8192x320xf16> into tensor<2x4096x320xf16>
%290 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%expanded_776, %261 : tensor<2x4096x320xf16>, tensor<2x4096x320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%expanded_777 = tensor.expand_shape %290 [[0], [1, 2], [3]] : tensor<2x4096x320xf16> into tensor<2x64x64x320xf16>
%291 = linalg.generic {indexing_maps = [#map11, #map22], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_777 : tensor<2x64x64x320xf16>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x320x64x64xf16>
%292 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_49 : tensor<320xf16>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x320x64x64xf16>
%293 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%291, %cst_48 : tensor<2x320x64x64xf16>, tensor<320x320x1x1xf16>) outs(%292 : tensor<2x320x64x64xf16>) -> tensor<2x320x64x64xf16>
%294 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%293, %120 : tensor<2x320x64x64xf16>, tensor<2x320x64x64xf16>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x320x64x64xf16>
%collapsed_778 = tensor.collapse_shape %294 [[0], [1], [2, 3]] : tensor<2x320x64x64xf16> into tensor<2x320x4096xf16>
%expanded_779 = tensor.expand_shape %collapsed_778 [[0], [1, 2], [3]] : tensor<2x320x4096xf16> into tensor<2x32x10x4096xf16>
%295 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%296 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%295 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%297 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%296 : tensor<f32>) outs(%46 : tensor<2x32x10x4096xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x10x4096xf32>
%298 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_779 : tensor<2x32x10x4096xf16>) outs(%297 : tensor<2x32x10x4096xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x10x4096xf32>
%299 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%298 : tensor<2x32x10x4096xf32>) outs(%49 : tensor<2x32x10x4096xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x10x4096xf64>
%300 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%301 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%299 : tensor<2x32x10x4096xf64>) outs(%300 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%302 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%301 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_702 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%303 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%299, %302 : tensor<2x32x10x4096xf64>, tensor<2x32x1x1xf64>) outs(%49 : tensor<2x32x10x4096xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x10x4096xf64>
%304 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%303 : tensor<2x32x10x4096xf64>) outs(%49 : tensor<2x32x10x4096xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x10x4096xf64>
%305 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%306 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%304 : tensor<2x32x10x4096xf64>) outs(%305 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%307 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%306 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_702 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%308 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%307 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%309 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%310 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%298 : tensor<2x32x10x4096xf32>) outs(%309 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%311 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%310 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_703 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%312 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%308, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%313 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%312 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%314 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_779, %311 : tensor<2x32x10x4096xf16>, tensor<2x32x1x1xf32>) outs(%46 : tensor<2x32x10x4096xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x10x4096xf32>
%315 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%314, %313 : tensor<2x32x10x4096xf32>, tensor<2x32x1x1xf32>) outs(%46 : tensor<2x32x10x4096xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x10x4096xf32>
%collapsed_780 = tensor.collapse_shape %315 [[0], [1, 2], [3]] : tensor<2x32x10x4096xf32> into tensor<2x320x4096xf32>
%expanded_781 = tensor.expand_shape %collapsed_780 [[0], [1], [2, 3]] : tensor<2x320x4096xf32> into tensor<2x320x64x64xf32>
%expanded_782 = tensor.expand_shape %cst_50 [[0, 1, 2]] : tensor<320xf16> into tensor<320x1x1xf16>
%316 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_781, %expanded_782 : tensor<2x320x64x64xf32>, tensor<320x1x1xf16>) outs(%69 : tensor<2x320x64x64xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x320x64x64xf32>
%expanded_783 = tensor.expand_shape %cst_51 [[0, 1, 2]] : tensor<320xf16> into tensor<320x1x1xf16>
%317 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%316, %expanded_783 : tensor<2x320x64x64xf32>, tensor<320x1x1xf16>) outs(%69 : tensor<2x320x64x64xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x320x64x64xf32>
%318 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%319 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%318 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%320 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%319 : tensor<f16>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x320x64x64xf16>
%321 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%317 : tensor<2x320x64x64xf32>) outs(%320 : tensor<2x320x64x64xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x320x64x64xf16>
%322 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%321 : tensor<2x320x64x64xf16>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x320x64x64xf16>
%323 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%322, %321 : tensor<2x320x64x64xf16>, tensor<2x320x64x64xf16>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x320x64x64xf16>
%padded_784 = tensor.pad %323 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x320x64x64xf16> to tensor<2x320x66x66xf16>
%324 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_53 : tensor<320xf16>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x320x64x64xf16>
%325 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_784, %cst_52 : tensor<2x320x66x66xf16>, tensor<320x320x3x3xf16>) outs(%324 : tensor<2x320x64x64xf16>) -> tensor<2x320x64x64xf16>
%326 = linalg.generic {indexing_maps = [#map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%40 : tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280xf16>
%327 = linalg.generic {indexing_maps = [#map5, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%326, %40 : tensor<2x1280xf16>, tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280xf16>
%328 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_54 : tensor<320x1280xf16>) outs(%82 : tensor<1280x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x320xf16>
%329 = linalg.fill ins(%cst_694 : f16) outs(%25 : tensor<2x320xf16>) -> tensor<2x320xf16>
%330 = linalg.matmul ins(%327, %328 : tensor<2x1280xf16>, tensor<1280x320xf16>) outs(%329 : tensor<2x320xf16>) -> tensor<2x320xf16>
%331 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_55, %330 : tensor<320xf16>, tensor<2x320xf16>) outs(%25 : tensor<2x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x320xf16>
%expanded_785 = tensor.expand_shape %331 [[0], [1, 2, 3]] : tensor<2x320xf16> into tensor<2x320x1x1xf16>
%332 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%325, %expanded_785 : tensor<2x320x64x64xf16>, tensor<2x320x1x1xf16>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x320x64x64xf16>
%collapsed_786 = tensor.collapse_shape %332 [[0], [1], [2, 3]] : tensor<2x320x64x64xf16> into tensor<2x320x4096xf16>
%expanded_787 = tensor.expand_shape %collapsed_786 [[0], [1, 2], [3]] : tensor<2x320x4096xf16> into tensor<2x32x10x4096xf16>
%333 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%334 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%333 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%335 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%334 : tensor<f32>) outs(%46 : tensor<2x32x10x4096xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x10x4096xf32>
%336 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_787 : tensor<2x32x10x4096xf16>) outs(%335 : tensor<2x32x10x4096xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x10x4096xf32>
%337 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%336 : tensor<2x32x10x4096xf32>) outs(%49 : tensor<2x32x10x4096xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x10x4096xf64>
%338 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%339 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%337 : tensor<2x32x10x4096xf64>) outs(%338 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%340 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%339 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_702 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%341 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%337, %340 : tensor<2x32x10x4096xf64>, tensor<2x32x1x1xf64>) outs(%49 : tensor<2x32x10x4096xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x10x4096xf64>
%342 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%341 : tensor<2x32x10x4096xf64>) outs(%49 : tensor<2x32x10x4096xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x10x4096xf64>
%343 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%344 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%342 : tensor<2x32x10x4096xf64>) outs(%343 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%345 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%344 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_702 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%346 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%345 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%347 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%348 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%336 : tensor<2x32x10x4096xf32>) outs(%347 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%349 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%348 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_703 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%350 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%346, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%351 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%350 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%352 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_787, %349 : tensor<2x32x10x4096xf16>, tensor<2x32x1x1xf32>) outs(%46 : tensor<2x32x10x4096xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x10x4096xf32>
%353 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%352, %351 : tensor<2x32x10x4096xf32>, tensor<2x32x1x1xf32>) outs(%46 : tensor<2x32x10x4096xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x10x4096xf32>
%collapsed_788 = tensor.collapse_shape %353 [[0], [1, 2], [3]] : tensor<2x32x10x4096xf32> into tensor<2x320x4096xf32>
%expanded_789 = tensor.expand_shape %collapsed_788 [[0], [1], [2, 3]] : tensor<2x320x4096xf32> into tensor<2x320x64x64xf32>
%expanded_790 = tensor.expand_shape %cst_56 [[0, 1, 2]] : tensor<320xf16> into tensor<320x1x1xf16>
%354 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_789, %expanded_790 : tensor<2x320x64x64xf32>, tensor<320x1x1xf16>) outs(%69 : tensor<2x320x64x64xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x320x64x64xf32>
%expanded_791 = tensor.expand_shape %cst_57 [[0, 1, 2]] : tensor<320xf16> into tensor<320x1x1xf16>
%355 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%354, %expanded_791 : tensor<2x320x64x64xf32>, tensor<320x1x1xf16>) outs(%69 : tensor<2x320x64x64xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x320x64x64xf32>
%356 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%357 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%356 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%358 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%357 : tensor<f16>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x320x64x64xf16>
%359 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%355 : tensor<2x320x64x64xf32>) outs(%358 : tensor<2x320x64x64xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x320x64x64xf16>
%360 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%359 : tensor<2x320x64x64xf16>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x320x64x64xf16>
%361 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%360, %359 : tensor<2x320x64x64xf16>, tensor<2x320x64x64xf16>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x320x64x64xf16>
%padded_792 = tensor.pad %361 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x320x64x64xf16> to tensor<2x320x66x66xf16>
%362 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_59 : tensor<320xf16>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x320x64x64xf16>
%363 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_792, %cst_58 : tensor<2x320x66x66xf16>, tensor<320x320x3x3xf16>) outs(%362 : tensor<2x320x64x64xf16>) -> tensor<2x320x64x64xf16>
%364 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%294, %363 : tensor<2x320x64x64xf16>, tensor<2x320x64x64xf16>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x320x64x64xf16>
%365 = linalg.generic {indexing_maps = [#map11, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%364, %cst_3 : tensor<2x320x64x64xf16>, tensor<f64>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.divf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x320x64x64xf16>
%collapsed_793 = tensor.collapse_shape %365 [[0], [1], [2, 3]] : tensor<2x320x64x64xf16> into tensor<2x320x4096xf16>
%expanded_794 = tensor.expand_shape %collapsed_793 [[0], [1, 2], [3]] : tensor<2x320x4096xf16> into tensor<2x32x10x4096xf16>
%366 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%367 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%366 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%368 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%367 : tensor<f32>) outs(%46 : tensor<2x32x10x4096xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x10x4096xf32>
%369 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_794 : tensor<2x32x10x4096xf16>) outs(%368 : tensor<2x32x10x4096xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x10x4096xf32>
%370 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%369 : tensor<2x32x10x4096xf32>) outs(%49 : tensor<2x32x10x4096xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x10x4096xf64>
%371 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%372 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%370 : tensor<2x32x10x4096xf64>) outs(%371 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%373 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%372 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_702 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%374 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%370, %373 : tensor<2x32x10x4096xf64>, tensor<2x32x1x1xf64>) outs(%49 : tensor<2x32x10x4096xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x10x4096xf64>
%375 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%374 : tensor<2x32x10x4096xf64>) outs(%49 : tensor<2x32x10x4096xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x10x4096xf64>
%376 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%377 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%375 : tensor<2x32x10x4096xf64>) outs(%376 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%378 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%377 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_702 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%379 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%378 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%380 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%381 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%369 : tensor<2x32x10x4096xf32>) outs(%380 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%382 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%381 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_703 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%383 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%379, %cst_2 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%384 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%383 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%385 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_794, %382 : tensor<2x32x10x4096xf16>, tensor<2x32x1x1xf32>) outs(%46 : tensor<2x32x10x4096xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x10x4096xf32>
%386 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%385, %384 : tensor<2x32x10x4096xf32>, tensor<2x32x1x1xf32>) outs(%46 : tensor<2x32x10x4096xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x10x4096xf32>
%collapsed_795 = tensor.collapse_shape %386 [[0], [1, 2], [3]] : tensor<2x32x10x4096xf32> into tensor<2x320x4096xf32>
%expanded_796 = tensor.expand_shape %collapsed_795 [[0], [1], [2, 3]] : tensor<2x320x4096xf32> into tensor<2x320x64x64xf32>
%expanded_797 = tensor.expand_shape %cst_60 [[0, 1, 2]] : tensor<320xf16> into tensor<320x1x1xf16>
%387 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_796, %expanded_797 : tensor<2x320x64x64xf32>, tensor<320x1x1xf16>) outs(%69 : tensor<2x320x64x64xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x320x64x64xf32>
%expanded_798 = tensor.expand_shape %cst_61 [[0, 1, 2]] : tensor<320xf16> into tensor<320x1x1xf16>
%388 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%387, %expanded_798 : tensor<2x320x64x64xf32>, tensor<320x1x1xf16>) outs(%69 : tensor<2x320x64x64xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x320x64x64xf32>
%389 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%390 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%389 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%391 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%390 : tensor<f16>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x320x64x64xf16>
%392 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%388 : tensor<2x320x64x64xf32>) outs(%391 : tensor<2x320x64x64xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x320x64x64xf16>
%393 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_63 : tensor<320xf16>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x320x64x64xf16>
%394 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%392, %cst_62 : tensor<2x320x64x64xf16>, tensor<320x320x1x1xf16>) outs(%393 : tensor<2x320x64x64xf16>) -> tensor<2x320x64x64xf16>
%395 = linalg.generic {indexing_maps = [#map11, #map15], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%394 : tensor<2x320x64x64xf16>) outs(%150 : tensor<2x64x64x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x64x64x320xf16>
%collapsed_799 = tensor.collapse_shape %395 [[0], [1, 2], [3]] : tensor<2x64x64x320xf16> into tensor<2x4096x320xf16>
%396 = linalg.fill ins(%cst_694 : f16) outs(%152 : tensor<2x4096x1xf16>) -> tensor<2x4096x1xf16>
%397 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%collapsed_799 : tensor<2x4096x320xf16>) outs(%396 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1xf16>
%398 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%397 : tensor<2x4096x1xf16>) outs(%152 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_704 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1xf16>
%399 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%398 : tensor<2x4096x1xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x4096x320xf16>
%400 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%collapsed_799, %399 : tensor<2x4096x320xf16>, tensor<2x4096x320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%401 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%400 : tensor<2x4096x320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.mulf %in, %in : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%402 = linalg.fill ins(%cst_694 : f16) outs(%152 : tensor<2x4096x1xf16>) -> tensor<2x4096x1xf16>
%403 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%401 : tensor<2x4096x320xf16>) outs(%402 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1xf16>
%404 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%403 : tensor<2x4096x1xf16>) outs(%152 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_704 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1xf16>
%405 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%404 : tensor<2x4096x1xf16>) outs(%152 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.truncf %cst_700 : f64 to f16
%4281 = arith.addf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x4096x1xf16>
%406 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%405 : tensor<2x4096x1xf16>) outs(%152 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.rsqrt %in : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1xf16>
%407 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%406 : tensor<2x4096x1xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x4096x320xf16>
%408 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%400, %407 : tensor<2x4096x320xf16>, tensor<2x4096x320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%409 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%408, %cst_64 : tensor<2x4096x320xf16>, tensor<320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%410 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%409, %cst_65 : tensor<2x4096x320xf16>, tensor<320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%411 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_66 : tensor<320x320xf16>) outs(%169 : tensor<320x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<320x320xf16>
%collapsed_800 = tensor.collapse_shape %410 [[0, 1], [2]] : tensor<2x4096x320xf16> into tensor<8192x320xf16>
%412 = linalg.fill ins(%cst_694 : f16) outs(%171 : tensor<8192x320xf16>) -> tensor<8192x320xf16>
%413 = linalg.matmul ins(%collapsed_800, %411 : tensor<8192x320xf16>, tensor<320x320xf16>) outs(%412 : tensor<8192x320xf16>) -> tensor<8192x320xf16>
%414 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_67 : tensor<320x320xf16>) outs(%169 : tensor<320x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<320x320xf16>
%415 = linalg.fill ins(%cst_694 : f16) outs(%171 : tensor<8192x320xf16>) -> tensor<8192x320xf16>
%416 = linalg.matmul ins(%collapsed_800, %414 : tensor<8192x320xf16>, tensor<320x320xf16>) outs(%415 : tensor<8192x320xf16>) -> tensor<8192x320xf16>
%417 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_68 : tensor<320x320xf16>) outs(%169 : tensor<320x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<320x320xf16>
%418 = linalg.fill ins(%cst_694 : f16) outs(%171 : tensor<8192x320xf16>) -> tensor<8192x320xf16>
%419 = linalg.matmul ins(%collapsed_800, %417 : tensor<8192x320xf16>, tensor<320x320xf16>) outs(%418 : tensor<8192x320xf16>) -> tensor<8192x320xf16>
%expanded_801 = tensor.expand_shape %413 [[0, 1], [2, 3]] : tensor<8192x320xf16> into tensor<2x4096x8x40xf16>
%420 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_801 : tensor<2x4096x8x40xf16>) outs(%180 : tensor<2x8x4096x40xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x4096x40xf16>
%collapsed_802 = tensor.collapse_shape %420 [[0, 1], [2], [3]] : tensor<2x8x4096x40xf16> into tensor<16x4096x40xf16>
%expanded_803 = tensor.expand_shape %416 [[0, 1], [2, 3]] : tensor<8192x320xf16> into tensor<2x4096x8x40xf16>
%421 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_803 : tensor<2x4096x8x40xf16>) outs(%180 : tensor<2x8x4096x40xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x4096x40xf16>
%collapsed_804 = tensor.collapse_shape %421 [[0, 1], [2], [3]] : tensor<2x8x4096x40xf16> into tensor<16x4096x40xf16>
%expanded_805 = tensor.expand_shape %419 [[0, 1], [2, 3]] : tensor<8192x320xf16> into tensor<2x4096x8x40xf16>
%422 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_805 : tensor<2x4096x8x40xf16>) outs(%180 : tensor<2x8x4096x40xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x4096x40xf16>
%collapsed_806 = tensor.collapse_shape %422 [[0, 1], [2], [3]] : tensor<2x8x4096x40xf16> into tensor<16x4096x40xf16>
%423 = linalg.generic {indexing_maps = [#map16, #map20], iterator_types = ["parallel", "parallel", "parallel"]} ins(%collapsed_804 : tensor<16x4096x40xf16>) outs(%184 : tensor<16x40x4096xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<16x40x4096xf16>
%424 = linalg.fill ins(%cst_694 : f16) outs(%186 : tensor<16x4096x4096xf16>) -> tensor<16x4096x4096xf16>
%425 = linalg.batch_matmul ins(%collapsed_802, %423 : tensor<16x4096x40xf16>, tensor<16x40x4096xf16>) outs(%424 : tensor<16x4096x4096xf16>) -> tensor<16x4096x4096xf16>
%426 = linalg.generic {indexing_maps = [#map16, #map21, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%425, %cst_1 : tensor<16x4096x4096xf16>, tensor<f64>) outs(%186 : tensor<16x4096x4096xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.mulf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<16x4096x4096xf16>
%427 = linalg.fill ins(%c0_i64 : i64) outs(%190 : tensor<16x4096x1xi64>) -> tensor<16x4096x1xi64>
%428 = linalg.fill ins(%cst_696 : f16) outs(%192 : tensor<16x4096x1xf16>) -> tensor<16x4096x1xf16>
%429:2 = linalg.generic {indexing_maps = [#map16, #map17, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%426 : tensor<16x4096x4096xf16>) outs(%428, %427 : tensor<16x4096x1xf16>, tensor<16x4096x1xi64>) {
^bb0(%in: f16, %out: f16, %out_1640: i64):
%4280 = linalg.index 2 : index
%4281 = arith.index_cast %4280 : index to i64
%4282 = arith.maxf %in, %out : f16
%4283 = arith.cmpf ogt, %in, %out : f16
%4284 = arith.select %4283, %4281, %out_1640 : i64
linalg.yield %4282, %4284 : f16, i64
} -> (tensor<16x4096x1xf16>, tensor<16x4096x1xi64>)
%430 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%426, %429#0 : tensor<16x4096x4096xf16>, tensor<16x4096x1xf16>) outs(%186 : tensor<16x4096x4096xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x4096x4096xf16>
%431 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%430 : tensor<16x4096x4096xf16>) outs(%186 : tensor<16x4096x4096xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.exp %in : f16
linalg.yield %4280 : f16
} -> tensor<16x4096x4096xf16>
%432 = linalg.fill ins(%cst_694 : f16) outs(%192 : tensor<16x4096x1xf16>) -> tensor<16x4096x1xf16>
%433 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%431 : tensor<16x4096x4096xf16>) outs(%432 : tensor<16x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<16x4096x1xf16>
%434 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%431, %433 : tensor<16x4096x4096xf16>, tensor<16x4096x1xf16>) outs(%186 : tensor<16x4096x4096xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.divf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x4096x4096xf16>
%435 = linalg.fill ins(%cst_694 : f16) outs(%200 : tensor<16x4096x40xf16>) -> tensor<16x4096x40xf16>
%436 = linalg.batch_matmul ins(%434, %collapsed_806 : tensor<16x4096x4096xf16>, tensor<16x4096x40xf16>) outs(%435 : tensor<16x4096x40xf16>) -> tensor<16x4096x40xf16>
%expanded_807 = tensor.expand_shape %436 [[0, 1], [2], [3]] : tensor<16x4096x40xf16> into tensor<2x8x4096x40xf16>
%437 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_807 : tensor<2x8x4096x40xf16>) outs(%203 : tensor<2x4096x8x40xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x4096x8x40xf16>
%438 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_69 : tensor<320x320xf16>) outs(%169 : tensor<320x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<320x320xf16>
%collapsed_808 = tensor.collapse_shape %437 [[0, 1], [2, 3]] : tensor<2x4096x8x40xf16> into tensor<8192x320xf16>
%439 = linalg.fill ins(%cst_694 : f16) outs(%171 : tensor<8192x320xf16>) -> tensor<8192x320xf16>
%440 = linalg.matmul ins(%collapsed_808, %438 : tensor<8192x320xf16>, tensor<320x320xf16>) outs(%439 : tensor<8192x320xf16>) -> tensor<8192x320xf16>
%441 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_70, %440 : tensor<320xf16>, tensor<8192x320xf16>) outs(%171 : tensor<8192x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<8192x320xf16>
%expanded_809 = tensor.expand_shape %441 [[0, 1], [2]] : tensor<8192x320xf16> into tensor<2x4096x320xf16>
%442 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%expanded_809, %collapsed_799 : tensor<2x4096x320xf16>, tensor<2x4096x320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%443 = linalg.fill ins(%cst_694 : f16) outs(%152 : tensor<2x4096x1xf16>) -> tensor<2x4096x1xf16>
%444 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%442 : tensor<2x4096x320xf16>) outs(%443 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1xf16>
%445 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%444 : tensor<2x4096x1xf16>) outs(%152 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_704 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1xf16>
%446 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%445 : tensor<2x4096x1xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x4096x320xf16>
%447 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%442, %446 : tensor<2x4096x320xf16>, tensor<2x4096x320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%448 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%447 : tensor<2x4096x320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.mulf %in, %in : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%449 = linalg.fill ins(%cst_694 : f16) outs(%152 : tensor<2x4096x1xf16>) -> tensor<2x4096x1xf16>
%450 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%448 : tensor<2x4096x320xf16>) outs(%449 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1xf16>
%451 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%450 : tensor<2x4096x1xf16>) outs(%152 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_704 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1xf16>
%452 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%451 : tensor<2x4096x1xf16>) outs(%152 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.truncf %cst_700 : f64 to f16
%4281 = arith.addf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x4096x1xf16>
%453 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%452 : tensor<2x4096x1xf16>) outs(%152 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.rsqrt %in : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1xf16>
%454 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%453 : tensor<2x4096x1xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x4096x320xf16>
%455 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%447, %454 : tensor<2x4096x320xf16>, tensor<2x4096x320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%456 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%455, %cst_71 : tensor<2x4096x320xf16>, tensor<320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%457 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%456, %cst_72 : tensor<2x4096x320xf16>, tensor<320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%458 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_73 : tensor<320x320xf16>) outs(%169 : tensor<320x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<320x320xf16>
%collapsed_810 = tensor.collapse_shape %457 [[0, 1], [2]] : tensor<2x4096x320xf16> into tensor<8192x320xf16>
%459 = linalg.fill ins(%cst_694 : f16) outs(%171 : tensor<8192x320xf16>) -> tensor<8192x320xf16>
%460 = linalg.matmul ins(%collapsed_810, %458 : tensor<8192x320xf16>, tensor<320x320xf16>) outs(%459 : tensor<8192x320xf16>) -> tensor<8192x320xf16>
%461 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_74 : tensor<320x768xf16>) outs(%228 : tensor<768x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<768x320xf16>
%462 = linalg.fill ins(%cst_694 : f16) outs(%230 : tensor<154x320xf16>) -> tensor<154x320xf16>
%463 = linalg.matmul ins(%collapsed_761, %461 : tensor<154x768xf16>, tensor<768x320xf16>) outs(%462 : tensor<154x320xf16>) -> tensor<154x320xf16>
%464 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_75 : tensor<320x768xf16>) outs(%228 : tensor<768x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<768x320xf16>
%465 = linalg.fill ins(%cst_694 : f16) outs(%230 : tensor<154x320xf16>) -> tensor<154x320xf16>
%466 = linalg.matmul ins(%collapsed_761, %464 : tensor<154x768xf16>, tensor<768x320xf16>) outs(%465 : tensor<154x320xf16>) -> tensor<154x320xf16>
%expanded_811 = tensor.expand_shape %460 [[0, 1], [2, 3]] : tensor<8192x320xf16> into tensor<2x4096x8x40xf16>
%467 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_811 : tensor<2x4096x8x40xf16>) outs(%180 : tensor<2x8x4096x40xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x4096x40xf16>
%collapsed_812 = tensor.collapse_shape %467 [[0, 1], [2], [3]] : tensor<2x8x4096x40xf16> into tensor<16x4096x40xf16>
%expanded_813 = tensor.expand_shape %463 [[0, 1], [2, 3]] : tensor<154x320xf16> into tensor<2x77x8x40xf16>
%468 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_813 : tensor<2x77x8x40xf16>) outs(%237 : tensor<2x8x77x40xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x77x40xf16>
%collapsed_814 = tensor.collapse_shape %468 [[0, 1], [2], [3]] : tensor<2x8x77x40xf16> into tensor<16x77x40xf16>
%expanded_815 = tensor.expand_shape %466 [[0, 1], [2, 3]] : tensor<154x320xf16> into tensor<2x77x8x40xf16>
%469 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_815 : tensor<2x77x8x40xf16>) outs(%237 : tensor<2x8x77x40xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x77x40xf16>
%collapsed_816 = tensor.collapse_shape %469 [[0, 1], [2], [3]] : tensor<2x8x77x40xf16> into tensor<16x77x40xf16>
%470 = linalg.generic {indexing_maps = [#map16, #map20], iterator_types = ["parallel", "parallel", "parallel"]} ins(%collapsed_814 : tensor<16x77x40xf16>) outs(%240 : tensor<16x40x77xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<16x40x77xf16>
%471 = linalg.fill ins(%cst_694 : f16) outs(%242 : tensor<16x4096x77xf16>) -> tensor<16x4096x77xf16>
%472 = linalg.batch_matmul ins(%collapsed_812, %470 : tensor<16x4096x40xf16>, tensor<16x40x77xf16>) outs(%471 : tensor<16x4096x77xf16>) -> tensor<16x4096x77xf16>
%473 = linalg.generic {indexing_maps = [#map16, #map21, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%472, %cst_1 : tensor<16x4096x77xf16>, tensor<f64>) outs(%242 : tensor<16x4096x77xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.mulf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<16x4096x77xf16>
%474 = linalg.fill ins(%c0_i64 : i64) outs(%190 : tensor<16x4096x1xi64>) -> tensor<16x4096x1xi64>
%475 = linalg.fill ins(%cst_696 : f16) outs(%192 : tensor<16x4096x1xf16>) -> tensor<16x4096x1xf16>
%476:2 = linalg.generic {indexing_maps = [#map16, #map17, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%473 : tensor<16x4096x77xf16>) outs(%475, %474 : tensor<16x4096x1xf16>, tensor<16x4096x1xi64>) {
^bb0(%in: f16, %out: f16, %out_1640: i64):
%4280 = linalg.index 2 : index
%4281 = arith.index_cast %4280 : index to i64
%4282 = arith.maxf %in, %out : f16
%4283 = arith.cmpf ogt, %in, %out : f16
%4284 = arith.select %4283, %4281, %out_1640 : i64
linalg.yield %4282, %4284 : f16, i64
} -> (tensor<16x4096x1xf16>, tensor<16x4096x1xi64>)
%477 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%473, %476#0 : tensor<16x4096x77xf16>, tensor<16x4096x1xf16>) outs(%242 : tensor<16x4096x77xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x4096x77xf16>
%478 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%477 : tensor<16x4096x77xf16>) outs(%242 : tensor<16x4096x77xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.exp %in : f16
linalg.yield %4280 : f16
} -> tensor<16x4096x77xf16>
%479 = linalg.fill ins(%cst_694 : f16) outs(%192 : tensor<16x4096x1xf16>) -> tensor<16x4096x1xf16>
%480 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%478 : tensor<16x4096x77xf16>) outs(%479 : tensor<16x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<16x4096x1xf16>
%481 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%478, %480 : tensor<16x4096x77xf16>, tensor<16x4096x1xf16>) outs(%242 : tensor<16x4096x77xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.divf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x4096x77xf16>
%482 = linalg.fill ins(%cst_694 : f16) outs(%200 : tensor<16x4096x40xf16>) -> tensor<16x4096x40xf16>
%483 = linalg.batch_matmul ins(%481, %collapsed_816 : tensor<16x4096x77xf16>, tensor<16x77x40xf16>) outs(%482 : tensor<16x4096x40xf16>) -> tensor<16x4096x40xf16>
%expanded_817 = tensor.expand_shape %483 [[0, 1], [2], [3]] : tensor<16x4096x40xf16> into tensor<2x8x4096x40xf16>
%484 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_817 : tensor<2x8x4096x40xf16>) outs(%203 : tensor<2x4096x8x40xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x4096x8x40xf16>
%485 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_76 : tensor<320x320xf16>) outs(%169 : tensor<320x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<320x320xf16>
%collapsed_818 = tensor.collapse_shape %484 [[0, 1], [2, 3]] : tensor<2x4096x8x40xf16> into tensor<8192x320xf16>
%486 = linalg.fill ins(%cst_694 : f16) outs(%171 : tensor<8192x320xf16>) -> tensor<8192x320xf16>
%487 = linalg.matmul ins(%collapsed_818, %485 : tensor<8192x320xf16>, tensor<320x320xf16>) outs(%486 : tensor<8192x320xf16>) -> tensor<8192x320xf16>
%488 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_77, %487 : tensor<320xf16>, tensor<8192x320xf16>) outs(%171 : tensor<8192x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<8192x320xf16>
%expanded_819 = tensor.expand_shape %488 [[0, 1], [2]] : tensor<8192x320xf16> into tensor<2x4096x320xf16>
%489 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%expanded_819, %442 : tensor<2x4096x320xf16>, tensor<2x4096x320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%490 = linalg.fill ins(%cst_694 : f16) outs(%152 : tensor<2x4096x1xf16>) -> tensor<2x4096x1xf16>
%491 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%489 : tensor<2x4096x320xf16>) outs(%490 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1xf16>
%492 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%491 : tensor<2x4096x1xf16>) outs(%152 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_704 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1xf16>
%493 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%492 : tensor<2x4096x1xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x4096x320xf16>
%494 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%489, %493 : tensor<2x4096x320xf16>, tensor<2x4096x320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%495 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%494 : tensor<2x4096x320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.mulf %in, %in : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%496 = linalg.fill ins(%cst_694 : f16) outs(%152 : tensor<2x4096x1xf16>) -> tensor<2x4096x1xf16>
%497 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%495 : tensor<2x4096x320xf16>) outs(%496 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1xf16>
%498 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%497 : tensor<2x4096x1xf16>) outs(%152 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_704 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1xf16>
%499 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%498 : tensor<2x4096x1xf16>) outs(%152 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.truncf %cst_700 : f64 to f16
%4281 = arith.addf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x4096x1xf16>
%500 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%499 : tensor<2x4096x1xf16>) outs(%152 : tensor<2x4096x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.rsqrt %in : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1xf16>
%501 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%500 : tensor<2x4096x1xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x4096x320xf16>
%502 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%494, %501 : tensor<2x4096x320xf16>, tensor<2x4096x320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%503 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%502, %cst_78 : tensor<2x4096x320xf16>, tensor<320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%504 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%503, %cst_79 : tensor<2x4096x320xf16>, tensor<320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%505 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_80 : tensor<2560x320xf16>) outs(%277 : tensor<320x2560xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<320x2560xf16>
%collapsed_820 = tensor.collapse_shape %504 [[0, 1], [2]] : tensor<2x4096x320xf16> into tensor<8192x320xf16>
%506 = linalg.fill ins(%cst_694 : f16) outs(%279 : tensor<8192x2560xf16>) -> tensor<8192x2560xf16>
%507 = linalg.matmul ins(%collapsed_820, %505 : tensor<8192x320xf16>, tensor<320x2560xf16>) outs(%506 : tensor<8192x2560xf16>) -> tensor<8192x2560xf16>
%508 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_81, %507 : tensor<2560xf16>, tensor<8192x2560xf16>) outs(%279 : tensor<8192x2560xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<8192x2560xf16>
%expanded_821 = tensor.expand_shape %508 [[0, 1], [2]] : tensor<8192x2560xf16> into tensor<2x4096x2560xf16>
%extracted_slice_822 = tensor.extract_slice %expanded_821[0, 0, 0] [2, 4096, 1280] [1, 1, 1] : tensor<2x4096x2560xf16> to tensor<2x4096x1280xf16>
%extracted_slice_823 = tensor.extract_slice %expanded_821[0, 0, 1280] [2, 4096, 1280] [1, 1, 1] : tensor<2x4096x2560xf16> to tensor<2x4096x1280xf16>
%509 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%extracted_slice_823 : tensor<2x4096x1280xf16>) outs(%283 : tensor<2x4096x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.sqrt %cst_697 : f16
%4281 = arith.divf %in, %4280 : f16
%4282 = math.erf %4281 : f16
%4283 = arith.addf %4282, %cst_695 : f16
%4284 = arith.mulf %4283, %cst_698 : f16
%4285 = arith.mulf %in, %4284 : f16
linalg.yield %4285 : f16
} -> tensor<2x4096x1280xf16>
%510 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%extracted_slice_822, %509 : tensor<2x4096x1280xf16>, tensor<2x4096x1280xf16>) outs(%283 : tensor<2x4096x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x1280xf16>
%511 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_82 : tensor<320x1280xf16>) outs(%82 : tensor<1280x320xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x320xf16>
%collapsed_824 = tensor.collapse_shape %510 [[0, 1], [2]] : tensor<2x4096x1280xf16> into tensor<8192x1280xf16>
%512 = linalg.fill ins(%cst_694 : f16) outs(%171 : tensor<8192x320xf16>) -> tensor<8192x320xf16>
%513 = linalg.matmul ins(%collapsed_824, %511 : tensor<8192x1280xf16>, tensor<1280x320xf16>) outs(%512 : tensor<8192x320xf16>) -> tensor<8192x320xf16>
%514 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_83, %513 : tensor<320xf16>, tensor<8192x320xf16>) outs(%171 : tensor<8192x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<8192x320xf16>
%expanded_825 = tensor.expand_shape %514 [[0, 1], [2]] : tensor<8192x320xf16> into tensor<2x4096x320xf16>
%515 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%expanded_825, %489 : tensor<2x4096x320xf16>, tensor<2x4096x320xf16>) outs(%156 : tensor<2x4096x320xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x4096x320xf16>
%expanded_826 = tensor.expand_shape %515 [[0], [1, 2], [3]] : tensor<2x4096x320xf16> into tensor<2x64x64x320xf16>
%516 = linalg.generic {indexing_maps = [#map11, #map22], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_826 : tensor<2x64x64x320xf16>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x320x64x64xf16>
%517 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_85 : tensor<320xf16>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x320x64x64xf16>
%518 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%516, %cst_84 : tensor<2x320x64x64xf16>, tensor<320x320x1x1xf16>) outs(%517 : tensor<2x320x64x64xf16>) -> tensor<2x320x64x64xf16>
%519 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%518, %365 : tensor<2x320x64x64xf16>, tensor<2x320x64x64xf16>) outs(%41 : tensor<2x320x64x64xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x320x64x64xf16>
%padded_827 = tensor.pad %519 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x320x64x64xf16> to tensor<2x320x66x66xf16>
%520 = tensor.empty() : tensor<2x320x32x32xf16>
%521 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_87 : tensor<320xf16>) outs(%520 : tensor<2x320x32x32xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x320x32x32xf16>
%522 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>} ins(%padded_827, %cst_86 : tensor<2x320x66x66xf16>, tensor<320x320x3x3xf16>) outs(%521 : tensor<2x320x32x32xf16>) -> tensor<2x320x32x32xf16>
%collapsed_828 = tensor.collapse_shape %522 [[0], [1], [2, 3]] : tensor<2x320x32x32xf16> into tensor<2x320x1024xf16>
%expanded_829 = tensor.expand_shape %collapsed_828 [[0], [1, 2], [3]] : tensor<2x320x1024xf16> into tensor<2x32x10x1024xf16>
%523 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%524 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%523 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%525 = tensor.empty() : tensor<2x32x10x1024xf32>
%526 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%524 : tensor<f32>) outs(%525 : tensor<2x32x10x1024xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x10x1024xf32>
%527 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_829 : tensor<2x32x10x1024xf16>) outs(%526 : tensor<2x32x10x1024xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x10x1024xf32>
%528 = tensor.empty() : tensor<2x32x10x1024xf64>
%529 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%527 : tensor<2x32x10x1024xf32>) outs(%528 : tensor<2x32x10x1024xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x10x1024xf64>
%530 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%531 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%529 : tensor<2x32x10x1024xf64>) outs(%530 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%532 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%531 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_705 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%533 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%529, %532 : tensor<2x32x10x1024xf64>, tensor<2x32x1x1xf64>) outs(%528 : tensor<2x32x10x1024xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x10x1024xf64>
%534 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%533 : tensor<2x32x10x1024xf64>) outs(%528 : tensor<2x32x10x1024xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x10x1024xf64>
%535 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%536 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%534 : tensor<2x32x10x1024xf64>) outs(%535 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%537 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%536 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_705 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%538 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%537 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%539 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%540 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%527 : tensor<2x32x10x1024xf32>) outs(%539 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%541 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%540 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_706 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%542 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%538, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%543 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%542 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%544 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_829, %541 : tensor<2x32x10x1024xf16>, tensor<2x32x1x1xf32>) outs(%525 : tensor<2x32x10x1024xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x10x1024xf32>
%545 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%544, %543 : tensor<2x32x10x1024xf32>, tensor<2x32x1x1xf32>) outs(%525 : tensor<2x32x10x1024xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x10x1024xf32>
%collapsed_830 = tensor.collapse_shape %545 [[0], [1, 2], [3]] : tensor<2x32x10x1024xf32> into tensor<2x320x1024xf32>
%expanded_831 = tensor.expand_shape %collapsed_830 [[0], [1], [2, 3]] : tensor<2x320x1024xf32> into tensor<2x320x32x32xf32>
%expanded_832 = tensor.expand_shape %cst_88 [[0, 1, 2]] : tensor<320xf16> into tensor<320x1x1xf16>
%546 = tensor.empty() : tensor<2x320x32x32xf32>
%547 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_831, %expanded_832 : tensor<2x320x32x32xf32>, tensor<320x1x1xf16>) outs(%546 : tensor<2x320x32x32xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x320x32x32xf32>
%expanded_833 = tensor.expand_shape %cst_89 [[0, 1, 2]] : tensor<320xf16> into tensor<320x1x1xf16>
%548 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%547, %expanded_833 : tensor<2x320x32x32xf32>, tensor<320x1x1xf16>) outs(%546 : tensor<2x320x32x32xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x320x32x32xf32>
%549 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%550 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%549 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%551 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%550 : tensor<f16>) outs(%520 : tensor<2x320x32x32xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x320x32x32xf16>
%552 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%548 : tensor<2x320x32x32xf32>) outs(%551 : tensor<2x320x32x32xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x320x32x32xf16>
%553 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%552 : tensor<2x320x32x32xf16>) outs(%520 : tensor<2x320x32x32xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x320x32x32xf16>
%554 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%553, %552 : tensor<2x320x32x32xf16>, tensor<2x320x32x32xf16>) outs(%520 : tensor<2x320x32x32xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x320x32x32xf16>
%padded_834 = tensor.pad %554 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x320x32x32xf16> to tensor<2x320x34x34xf16>
%555 = tensor.empty() : tensor<2x640x32x32xf16>
%556 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_91 : tensor<640xf16>) outs(%555 : tensor<2x640x32x32xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x640x32x32xf16>
%557 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_834, %cst_90 : tensor<2x320x34x34xf16>, tensor<640x320x3x3xf16>) outs(%556 : tensor<2x640x32x32xf16>) -> tensor<2x640x32x32xf16>
%558 = linalg.generic {indexing_maps = [#map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%40 : tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280xf16>
%559 = linalg.generic {indexing_maps = [#map5, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%558, %40 : tensor<2x1280xf16>, tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280xf16>
%560 = tensor.empty() : tensor<1280x640xf16>
%561 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_92 : tensor<640x1280xf16>) outs(%560 : tensor<1280x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x640xf16>
%562 = tensor.empty() : tensor<2x640xf16>
%563 = linalg.fill ins(%cst_694 : f16) outs(%562 : tensor<2x640xf16>) -> tensor<2x640xf16>
%564 = linalg.matmul ins(%559, %561 : tensor<2x1280xf16>, tensor<1280x640xf16>) outs(%563 : tensor<2x640xf16>) -> tensor<2x640xf16>
%565 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_93, %564 : tensor<640xf16>, tensor<2x640xf16>) outs(%562 : tensor<2x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x640xf16>
%expanded_835 = tensor.expand_shape %565 [[0], [1, 2, 3]] : tensor<2x640xf16> into tensor<2x640x1x1xf16>
%566 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%557, %expanded_835 : tensor<2x640x32x32xf16>, tensor<2x640x1x1xf16>) outs(%555 : tensor<2x640x32x32xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x640x32x32xf16>
%collapsed_836 = tensor.collapse_shape %566 [[0], [1], [2, 3]] : tensor<2x640x32x32xf16> into tensor<2x640x1024xf16>
%expanded_837 = tensor.expand_shape %collapsed_836 [[0], [1, 2], [3]] : tensor<2x640x1024xf16> into tensor<2x32x20x1024xf16>
%567 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%568 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%567 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%569 = tensor.empty() : tensor<2x32x20x1024xf32>
%570 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%568 : tensor<f32>) outs(%569 : tensor<2x32x20x1024xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x20x1024xf32>
%571 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_837 : tensor<2x32x20x1024xf16>) outs(%570 : tensor<2x32x20x1024xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x20x1024xf32>
%572 = tensor.empty() : tensor<2x32x20x1024xf64>
%573 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%571 : tensor<2x32x20x1024xf32>) outs(%572 : tensor<2x32x20x1024xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x20x1024xf64>
%574 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%575 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%573 : tensor<2x32x20x1024xf64>) outs(%574 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%576 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%575 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_707 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%577 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%573, %576 : tensor<2x32x20x1024xf64>, tensor<2x32x1x1xf64>) outs(%572 : tensor<2x32x20x1024xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x20x1024xf64>
%578 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%577 : tensor<2x32x20x1024xf64>) outs(%572 : tensor<2x32x20x1024xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x20x1024xf64>
%579 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%580 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%578 : tensor<2x32x20x1024xf64>) outs(%579 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%581 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%580 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_707 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%582 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%581 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%583 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%584 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%571 : tensor<2x32x20x1024xf32>) outs(%583 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%585 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%584 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_708 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%586 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%582, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%587 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%586 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%588 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_837, %585 : tensor<2x32x20x1024xf16>, tensor<2x32x1x1xf32>) outs(%569 : tensor<2x32x20x1024xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x20x1024xf32>
%589 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%588, %587 : tensor<2x32x20x1024xf32>, tensor<2x32x1x1xf32>) outs(%569 : tensor<2x32x20x1024xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x20x1024xf32>
%collapsed_838 = tensor.collapse_shape %589 [[0], [1, 2], [3]] : tensor<2x32x20x1024xf32> into tensor<2x640x1024xf32>
%expanded_839 = tensor.expand_shape %collapsed_838 [[0], [1], [2, 3]] : tensor<2x640x1024xf32> into tensor<2x640x32x32xf32>
%expanded_840 = tensor.expand_shape %cst_94 [[0, 1, 2]] : tensor<640xf16> into tensor<640x1x1xf16>
%590 = tensor.empty() : tensor<2x640x32x32xf32>
%591 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_839, %expanded_840 : tensor<2x640x32x32xf32>, tensor<640x1x1xf16>) outs(%590 : tensor<2x640x32x32xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x640x32x32xf32>
%expanded_841 = tensor.expand_shape %cst_95 [[0, 1, 2]] : tensor<640xf16> into tensor<640x1x1xf16>
%592 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%591, %expanded_841 : tensor<2x640x32x32xf32>, tensor<640x1x1xf16>) outs(%590 : tensor<2x640x32x32xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x640x32x32xf32>
%593 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%594 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%593 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%595 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%594 : tensor<f16>) outs(%555 : tensor<2x640x32x32xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x640x32x32xf16>
%596 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%592 : tensor<2x640x32x32xf32>) outs(%595 : tensor<2x640x32x32xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x640x32x32xf16>
%597 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%596 : tensor<2x640x32x32xf16>) outs(%555 : tensor<2x640x32x32xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x640x32x32xf16>
%598 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%597, %596 : tensor<2x640x32x32xf16>, tensor<2x640x32x32xf16>) outs(%555 : tensor<2x640x32x32xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x640x32x32xf16>
%padded_842 = tensor.pad %598 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x640x32x32xf16> to tensor<2x640x34x34xf16>
%599 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_97 : tensor<640xf16>) outs(%555 : tensor<2x640x32x32xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x640x32x32xf16>
%600 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_842, %cst_96 : tensor<2x640x34x34xf16>, tensor<640x640x3x3xf16>) outs(%599 : tensor<2x640x32x32xf16>) -> tensor<2x640x32x32xf16>
%601 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_99 : tensor<640xf16>) outs(%555 : tensor<2x640x32x32xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x640x32x32xf16>
%602 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%522, %cst_98 : tensor<2x320x32x32xf16>, tensor<640x320x1x1xf16>) outs(%601 : tensor<2x640x32x32xf16>) -> tensor<2x640x32x32xf16>
%603 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%602, %600 : tensor<2x640x32x32xf16>, tensor<2x640x32x32xf16>) outs(%555 : tensor<2x640x32x32xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x640x32x32xf16>
%604 = linalg.generic {indexing_maps = [#map11, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%603, %cst_3 : tensor<2x640x32x32xf16>, tensor<f64>) outs(%555 : tensor<2x640x32x32xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.divf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x640x32x32xf16>
%collapsed_843 = tensor.collapse_shape %604 [[0], [1], [2, 3]] : tensor<2x640x32x32xf16> into tensor<2x640x1024xf16>
%expanded_844 = tensor.expand_shape %collapsed_843 [[0], [1, 2], [3]] : tensor<2x640x1024xf16> into tensor<2x32x20x1024xf16>
%605 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%606 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%605 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%607 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%606 : tensor<f32>) outs(%569 : tensor<2x32x20x1024xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x20x1024xf32>
%608 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_844 : tensor<2x32x20x1024xf16>) outs(%607 : tensor<2x32x20x1024xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x20x1024xf32>
%609 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%608 : tensor<2x32x20x1024xf32>) outs(%572 : tensor<2x32x20x1024xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x20x1024xf64>
%610 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%611 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%609 : tensor<2x32x20x1024xf64>) outs(%610 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%612 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%611 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_707 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%613 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%609, %612 : tensor<2x32x20x1024xf64>, tensor<2x32x1x1xf64>) outs(%572 : tensor<2x32x20x1024xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x20x1024xf64>
%614 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%613 : tensor<2x32x20x1024xf64>) outs(%572 : tensor<2x32x20x1024xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x20x1024xf64>
%615 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%616 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%614 : tensor<2x32x20x1024xf64>) outs(%615 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%617 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%616 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_707 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%618 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%617 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%619 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%620 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%608 : tensor<2x32x20x1024xf32>) outs(%619 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%621 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%620 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_708 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%622 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%618, %cst_2 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%623 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%622 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%624 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_844, %621 : tensor<2x32x20x1024xf16>, tensor<2x32x1x1xf32>) outs(%569 : tensor<2x32x20x1024xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x20x1024xf32>
%625 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%624, %623 : tensor<2x32x20x1024xf32>, tensor<2x32x1x1xf32>) outs(%569 : tensor<2x32x20x1024xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x20x1024xf32>
%collapsed_845 = tensor.collapse_shape %625 [[0], [1, 2], [3]] : tensor<2x32x20x1024xf32> into tensor<2x640x1024xf32>
%expanded_846 = tensor.expand_shape %collapsed_845 [[0], [1], [2, 3]] : tensor<2x640x1024xf32> into tensor<2x640x32x32xf32>
%expanded_847 = tensor.expand_shape %cst_100 [[0, 1, 2]] : tensor<640xf16> into tensor<640x1x1xf16>
%626 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_846, %expanded_847 : tensor<2x640x32x32xf32>, tensor<640x1x1xf16>) outs(%590 : tensor<2x640x32x32xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x640x32x32xf32>
%expanded_848 = tensor.expand_shape %cst_101 [[0, 1, 2]] : tensor<640xf16> into tensor<640x1x1xf16>
%627 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%626, %expanded_848 : tensor<2x640x32x32xf32>, tensor<640x1x1xf16>) outs(%590 : tensor<2x640x32x32xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x640x32x32xf32>
%628 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%629 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%628 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%630 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%629 : tensor<f16>) outs(%555 : tensor<2x640x32x32xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x640x32x32xf16>
%631 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%627 : tensor<2x640x32x32xf32>) outs(%630 : tensor<2x640x32x32xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x640x32x32xf16>
%632 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_103 : tensor<640xf16>) outs(%555 : tensor<2x640x32x32xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x640x32x32xf16>
%633 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%631, %cst_102 : tensor<2x640x32x32xf16>, tensor<640x640x1x1xf16>) outs(%632 : tensor<2x640x32x32xf16>) -> tensor<2x640x32x32xf16>
%634 = tensor.empty() : tensor<2x32x32x640xf16>
%635 = linalg.generic {indexing_maps = [#map11, #map15], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%633 : tensor<2x640x32x32xf16>) outs(%634 : tensor<2x32x32x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x32x32x640xf16>
%collapsed_849 = tensor.collapse_shape %635 [[0], [1, 2], [3]] : tensor<2x32x32x640xf16> into tensor<2x1024x640xf16>
%636 = tensor.empty() : tensor<2x1024x1xf16>
%637 = linalg.fill ins(%cst_694 : f16) outs(%636 : tensor<2x1024x1xf16>) -> tensor<2x1024x1xf16>
%638 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%collapsed_849 : tensor<2x1024x640xf16>) outs(%637 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x1xf16>
%639 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%638 : tensor<2x1024x1xf16>) outs(%636 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_709 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x1xf16>
%640 = tensor.empty() : tensor<2x1024x640xf16>
%641 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%639 : tensor<2x1024x1xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1024x640xf16>
%642 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%collapsed_849, %641 : tensor<2x1024x640xf16>, tensor<2x1024x640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%643 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%642 : tensor<2x1024x640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.mulf %in, %in : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%644 = linalg.fill ins(%cst_694 : f16) outs(%636 : tensor<2x1024x1xf16>) -> tensor<2x1024x1xf16>
%645 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%643 : tensor<2x1024x640xf16>) outs(%644 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x1xf16>
%646 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%645 : tensor<2x1024x1xf16>) outs(%636 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_709 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x1xf16>
%647 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%646 : tensor<2x1024x1xf16>) outs(%636 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.truncf %cst_700 : f64 to f16
%4281 = arith.addf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x1024x1xf16>
%648 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%647 : tensor<2x1024x1xf16>) outs(%636 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.rsqrt %in : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x1xf16>
%649 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%648 : tensor<2x1024x1xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1024x640xf16>
%650 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%642, %649 : tensor<2x1024x640xf16>, tensor<2x1024x640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%651 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%650, %cst_104 : tensor<2x1024x640xf16>, tensor<640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%652 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%651, %cst_105 : tensor<2x1024x640xf16>, tensor<640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%653 = tensor.empty() : tensor<640x640xf16>
%654 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_106 : tensor<640x640xf16>) outs(%653 : tensor<640x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<640x640xf16>
%collapsed_850 = tensor.collapse_shape %652 [[0, 1], [2]] : tensor<2x1024x640xf16> into tensor<2048x640xf16>
%655 = tensor.empty() : tensor<2048x640xf16>
%656 = linalg.fill ins(%cst_694 : f16) outs(%655 : tensor<2048x640xf16>) -> tensor<2048x640xf16>
%657 = linalg.matmul ins(%collapsed_850, %654 : tensor<2048x640xf16>, tensor<640x640xf16>) outs(%656 : tensor<2048x640xf16>) -> tensor<2048x640xf16>
%658 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_107 : tensor<640x640xf16>) outs(%653 : tensor<640x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<640x640xf16>
%659 = linalg.fill ins(%cst_694 : f16) outs(%655 : tensor<2048x640xf16>) -> tensor<2048x640xf16>
%660 = linalg.matmul ins(%collapsed_850, %658 : tensor<2048x640xf16>, tensor<640x640xf16>) outs(%659 : tensor<2048x640xf16>) -> tensor<2048x640xf16>
%661 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_108 : tensor<640x640xf16>) outs(%653 : tensor<640x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<640x640xf16>
%662 = linalg.fill ins(%cst_694 : f16) outs(%655 : tensor<2048x640xf16>) -> tensor<2048x640xf16>
%663 = linalg.matmul ins(%collapsed_850, %661 : tensor<2048x640xf16>, tensor<640x640xf16>) outs(%662 : tensor<2048x640xf16>) -> tensor<2048x640xf16>
%expanded_851 = tensor.expand_shape %657 [[0, 1], [2, 3]] : tensor<2048x640xf16> into tensor<2x1024x8x80xf16>
%664 = tensor.empty() : tensor<2x8x1024x80xf16>
%665 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_851 : tensor<2x1024x8x80xf16>) outs(%664 : tensor<2x8x1024x80xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x1024x80xf16>
%collapsed_852 = tensor.collapse_shape %665 [[0, 1], [2], [3]] : tensor<2x8x1024x80xf16> into tensor<16x1024x80xf16>
%expanded_853 = tensor.expand_shape %660 [[0, 1], [2, 3]] : tensor<2048x640xf16> into tensor<2x1024x8x80xf16>
%666 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_853 : tensor<2x1024x8x80xf16>) outs(%664 : tensor<2x8x1024x80xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x1024x80xf16>
%collapsed_854 = tensor.collapse_shape %666 [[0, 1], [2], [3]] : tensor<2x8x1024x80xf16> into tensor<16x1024x80xf16>
%expanded_855 = tensor.expand_shape %663 [[0, 1], [2, 3]] : tensor<2048x640xf16> into tensor<2x1024x8x80xf16>
%667 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_855 : tensor<2x1024x8x80xf16>) outs(%664 : tensor<2x8x1024x80xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x1024x80xf16>
%collapsed_856 = tensor.collapse_shape %667 [[0, 1], [2], [3]] : tensor<2x8x1024x80xf16> into tensor<16x1024x80xf16>
%668 = tensor.empty() : tensor<16x80x1024xf16>
%669 = linalg.generic {indexing_maps = [#map16, #map20], iterator_types = ["parallel", "parallel", "parallel"]} ins(%collapsed_854 : tensor<16x1024x80xf16>) outs(%668 : tensor<16x80x1024xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<16x80x1024xf16>
%670 = tensor.empty() : tensor<16x1024x1024xf16>
%671 = linalg.fill ins(%cst_694 : f16) outs(%670 : tensor<16x1024x1024xf16>) -> tensor<16x1024x1024xf16>
%672 = linalg.batch_matmul ins(%collapsed_852, %669 : tensor<16x1024x80xf16>, tensor<16x80x1024xf16>) outs(%671 : tensor<16x1024x1024xf16>) -> tensor<16x1024x1024xf16>
%673 = linalg.generic {indexing_maps = [#map16, #map21, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%672, %cst_0 : tensor<16x1024x1024xf16>, tensor<f64>) outs(%670 : tensor<16x1024x1024xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.mulf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<16x1024x1024xf16>
%674 = tensor.empty() : tensor<16x1024x1xi64>
%675 = linalg.fill ins(%c0_i64 : i64) outs(%674 : tensor<16x1024x1xi64>) -> tensor<16x1024x1xi64>
%676 = tensor.empty() : tensor<16x1024x1xf16>
%677 = linalg.fill ins(%cst_696 : f16) outs(%676 : tensor<16x1024x1xf16>) -> tensor<16x1024x1xf16>
%678:2 = linalg.generic {indexing_maps = [#map16, #map17, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%673 : tensor<16x1024x1024xf16>) outs(%677, %675 : tensor<16x1024x1xf16>, tensor<16x1024x1xi64>) {
^bb0(%in: f16, %out: f16, %out_1640: i64):
%4280 = linalg.index 2 : index
%4281 = arith.index_cast %4280 : index to i64
%4282 = arith.maxf %in, %out : f16
%4283 = arith.cmpf ogt, %in, %out : f16
%4284 = arith.select %4283, %4281, %out_1640 : i64
linalg.yield %4282, %4284 : f16, i64
} -> (tensor<16x1024x1xf16>, tensor<16x1024x1xi64>)
%679 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%673, %678#0 : tensor<16x1024x1024xf16>, tensor<16x1024x1xf16>) outs(%670 : tensor<16x1024x1024xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x1024x1024xf16>
%680 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%679 : tensor<16x1024x1024xf16>) outs(%670 : tensor<16x1024x1024xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.exp %in : f16
linalg.yield %4280 : f16
} -> tensor<16x1024x1024xf16>
%681 = linalg.fill ins(%cst_694 : f16) outs(%676 : tensor<16x1024x1xf16>) -> tensor<16x1024x1xf16>
%682 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%680 : tensor<16x1024x1024xf16>) outs(%681 : tensor<16x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<16x1024x1xf16>
%683 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%680, %682 : tensor<16x1024x1024xf16>, tensor<16x1024x1xf16>) outs(%670 : tensor<16x1024x1024xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.divf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x1024x1024xf16>
%684 = tensor.empty() : tensor<16x1024x80xf16>
%685 = linalg.fill ins(%cst_694 : f16) outs(%684 : tensor<16x1024x80xf16>) -> tensor<16x1024x80xf16>
%686 = linalg.batch_matmul ins(%683, %collapsed_856 : tensor<16x1024x1024xf16>, tensor<16x1024x80xf16>) outs(%685 : tensor<16x1024x80xf16>) -> tensor<16x1024x80xf16>
%expanded_857 = tensor.expand_shape %686 [[0, 1], [2], [3]] : tensor<16x1024x80xf16> into tensor<2x8x1024x80xf16>
%687 = tensor.empty() : tensor<2x1024x8x80xf16>
%688 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_857 : tensor<2x8x1024x80xf16>) outs(%687 : tensor<2x1024x8x80xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1024x8x80xf16>
%689 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_109 : tensor<640x640xf16>) outs(%653 : tensor<640x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<640x640xf16>
%collapsed_858 = tensor.collapse_shape %688 [[0, 1], [2, 3]] : tensor<2x1024x8x80xf16> into tensor<2048x640xf16>
%690 = linalg.fill ins(%cst_694 : f16) outs(%655 : tensor<2048x640xf16>) -> tensor<2048x640xf16>
%691 = linalg.matmul ins(%collapsed_858, %689 : tensor<2048x640xf16>, tensor<640x640xf16>) outs(%690 : tensor<2048x640xf16>) -> tensor<2048x640xf16>
%692 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_110, %691 : tensor<640xf16>, tensor<2048x640xf16>) outs(%655 : tensor<2048x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2048x640xf16>
%expanded_859 = tensor.expand_shape %692 [[0, 1], [2]] : tensor<2048x640xf16> into tensor<2x1024x640xf16>
%693 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%expanded_859, %collapsed_849 : tensor<2x1024x640xf16>, tensor<2x1024x640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%694 = linalg.fill ins(%cst_694 : f16) outs(%636 : tensor<2x1024x1xf16>) -> tensor<2x1024x1xf16>
%695 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%693 : tensor<2x1024x640xf16>) outs(%694 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x1xf16>
%696 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%695 : tensor<2x1024x1xf16>) outs(%636 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_709 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x1xf16>
%697 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%696 : tensor<2x1024x1xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1024x640xf16>
%698 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%693, %697 : tensor<2x1024x640xf16>, tensor<2x1024x640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%699 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%698 : tensor<2x1024x640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.mulf %in, %in : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%700 = linalg.fill ins(%cst_694 : f16) outs(%636 : tensor<2x1024x1xf16>) -> tensor<2x1024x1xf16>
%701 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%699 : tensor<2x1024x640xf16>) outs(%700 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x1xf16>
%702 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%701 : tensor<2x1024x1xf16>) outs(%636 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_709 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x1xf16>
%703 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%702 : tensor<2x1024x1xf16>) outs(%636 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.truncf %cst_700 : f64 to f16
%4281 = arith.addf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x1024x1xf16>
%704 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%703 : tensor<2x1024x1xf16>) outs(%636 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.rsqrt %in : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x1xf16>
%705 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%704 : tensor<2x1024x1xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1024x640xf16>
%706 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%698, %705 : tensor<2x1024x640xf16>, tensor<2x1024x640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%707 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%706, %cst_111 : tensor<2x1024x640xf16>, tensor<640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%708 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%707, %cst_112 : tensor<2x1024x640xf16>, tensor<640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%709 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_113 : tensor<640x640xf16>) outs(%653 : tensor<640x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<640x640xf16>
%collapsed_860 = tensor.collapse_shape %708 [[0, 1], [2]] : tensor<2x1024x640xf16> into tensor<2048x640xf16>
%710 = linalg.fill ins(%cst_694 : f16) outs(%655 : tensor<2048x640xf16>) -> tensor<2048x640xf16>
%711 = linalg.matmul ins(%collapsed_860, %709 : tensor<2048x640xf16>, tensor<640x640xf16>) outs(%710 : tensor<2048x640xf16>) -> tensor<2048x640xf16>
%712 = tensor.empty() : tensor<768x640xf16>
%713 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_114 : tensor<640x768xf16>) outs(%712 : tensor<768x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<768x640xf16>
%714 = tensor.empty() : tensor<154x640xf16>
%715 = linalg.fill ins(%cst_694 : f16) outs(%714 : tensor<154x640xf16>) -> tensor<154x640xf16>
%716 = linalg.matmul ins(%collapsed_761, %713 : tensor<154x768xf16>, tensor<768x640xf16>) outs(%715 : tensor<154x640xf16>) -> tensor<154x640xf16>
%717 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_115 : tensor<640x768xf16>) outs(%712 : tensor<768x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<768x640xf16>
%718 = linalg.fill ins(%cst_694 : f16) outs(%714 : tensor<154x640xf16>) -> tensor<154x640xf16>
%719 = linalg.matmul ins(%collapsed_761, %717 : tensor<154x768xf16>, tensor<768x640xf16>) outs(%718 : tensor<154x640xf16>) -> tensor<154x640xf16>
%expanded_861 = tensor.expand_shape %711 [[0, 1], [2, 3]] : tensor<2048x640xf16> into tensor<2x1024x8x80xf16>
%720 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_861 : tensor<2x1024x8x80xf16>) outs(%664 : tensor<2x8x1024x80xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x1024x80xf16>
%collapsed_862 = tensor.collapse_shape %720 [[0, 1], [2], [3]] : tensor<2x8x1024x80xf16> into tensor<16x1024x80xf16>
%expanded_863 = tensor.expand_shape %716 [[0, 1], [2, 3]] : tensor<154x640xf16> into tensor<2x77x8x80xf16>
%721 = tensor.empty() : tensor<2x8x77x80xf16>
%722 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_863 : tensor<2x77x8x80xf16>) outs(%721 : tensor<2x8x77x80xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x77x80xf16>
%collapsed_864 = tensor.collapse_shape %722 [[0, 1], [2], [3]] : tensor<2x8x77x80xf16> into tensor<16x77x80xf16>
%expanded_865 = tensor.expand_shape %719 [[0, 1], [2, 3]] : tensor<154x640xf16> into tensor<2x77x8x80xf16>
%723 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_865 : tensor<2x77x8x80xf16>) outs(%721 : tensor<2x8x77x80xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x77x80xf16>
%collapsed_866 = tensor.collapse_shape %723 [[0, 1], [2], [3]] : tensor<2x8x77x80xf16> into tensor<16x77x80xf16>
%724 = tensor.empty() : tensor<16x80x77xf16>
%725 = linalg.generic {indexing_maps = [#map16, #map20], iterator_types = ["parallel", "parallel", "parallel"]} ins(%collapsed_864 : tensor<16x77x80xf16>) outs(%724 : tensor<16x80x77xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<16x80x77xf16>
%726 = tensor.empty() : tensor<16x1024x77xf16>
%727 = linalg.fill ins(%cst_694 : f16) outs(%726 : tensor<16x1024x77xf16>) -> tensor<16x1024x77xf16>
%728 = linalg.batch_matmul ins(%collapsed_862, %725 : tensor<16x1024x80xf16>, tensor<16x80x77xf16>) outs(%727 : tensor<16x1024x77xf16>) -> tensor<16x1024x77xf16>
%729 = linalg.generic {indexing_maps = [#map16, #map21, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%728, %cst_0 : tensor<16x1024x77xf16>, tensor<f64>) outs(%726 : tensor<16x1024x77xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.mulf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<16x1024x77xf16>
%730 = linalg.fill ins(%c0_i64 : i64) outs(%674 : tensor<16x1024x1xi64>) -> tensor<16x1024x1xi64>
%731 = linalg.fill ins(%cst_696 : f16) outs(%676 : tensor<16x1024x1xf16>) -> tensor<16x1024x1xf16>
%732:2 = linalg.generic {indexing_maps = [#map16, #map17, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%729 : tensor<16x1024x77xf16>) outs(%731, %730 : tensor<16x1024x1xf16>, tensor<16x1024x1xi64>) {
^bb0(%in: f16, %out: f16, %out_1640: i64):
%4280 = linalg.index 2 : index
%4281 = arith.index_cast %4280 : index to i64
%4282 = arith.maxf %in, %out : f16
%4283 = arith.cmpf ogt, %in, %out : f16
%4284 = arith.select %4283, %4281, %out_1640 : i64
linalg.yield %4282, %4284 : f16, i64
} -> (tensor<16x1024x1xf16>, tensor<16x1024x1xi64>)
%733 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%729, %732#0 : tensor<16x1024x77xf16>, tensor<16x1024x1xf16>) outs(%726 : tensor<16x1024x77xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x1024x77xf16>
%734 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%733 : tensor<16x1024x77xf16>) outs(%726 : tensor<16x1024x77xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.exp %in : f16
linalg.yield %4280 : f16
} -> tensor<16x1024x77xf16>
%735 = linalg.fill ins(%cst_694 : f16) outs(%676 : tensor<16x1024x1xf16>) -> tensor<16x1024x1xf16>
%736 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%734 : tensor<16x1024x77xf16>) outs(%735 : tensor<16x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<16x1024x1xf16>
%737 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%734, %736 : tensor<16x1024x77xf16>, tensor<16x1024x1xf16>) outs(%726 : tensor<16x1024x77xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.divf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x1024x77xf16>
%738 = linalg.fill ins(%cst_694 : f16) outs(%684 : tensor<16x1024x80xf16>) -> tensor<16x1024x80xf16>
%739 = linalg.batch_matmul ins(%737, %collapsed_866 : tensor<16x1024x77xf16>, tensor<16x77x80xf16>) outs(%738 : tensor<16x1024x80xf16>) -> tensor<16x1024x80xf16>
%expanded_867 = tensor.expand_shape %739 [[0, 1], [2], [3]] : tensor<16x1024x80xf16> into tensor<2x8x1024x80xf16>
%740 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_867 : tensor<2x8x1024x80xf16>) outs(%687 : tensor<2x1024x8x80xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1024x8x80xf16>
%741 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_116 : tensor<640x640xf16>) outs(%653 : tensor<640x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<640x640xf16>
%collapsed_868 = tensor.collapse_shape %740 [[0, 1], [2, 3]] : tensor<2x1024x8x80xf16> into tensor<2048x640xf16>
%742 = linalg.fill ins(%cst_694 : f16) outs(%655 : tensor<2048x640xf16>) -> tensor<2048x640xf16>
%743 = linalg.matmul ins(%collapsed_868, %741 : tensor<2048x640xf16>, tensor<640x640xf16>) outs(%742 : tensor<2048x640xf16>) -> tensor<2048x640xf16>
%744 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_117, %743 : tensor<640xf16>, tensor<2048x640xf16>) outs(%655 : tensor<2048x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2048x640xf16>
%expanded_869 = tensor.expand_shape %744 [[0, 1], [2]] : tensor<2048x640xf16> into tensor<2x1024x640xf16>
%745 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%expanded_869, %693 : tensor<2x1024x640xf16>, tensor<2x1024x640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%746 = linalg.fill ins(%cst_694 : f16) outs(%636 : tensor<2x1024x1xf16>) -> tensor<2x1024x1xf16>
%747 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%745 : tensor<2x1024x640xf16>) outs(%746 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x1xf16>
%748 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%747 : tensor<2x1024x1xf16>) outs(%636 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_709 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x1xf16>
%749 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%748 : tensor<2x1024x1xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1024x640xf16>
%750 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%745, %749 : tensor<2x1024x640xf16>, tensor<2x1024x640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%751 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%750 : tensor<2x1024x640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.mulf %in, %in : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%752 = linalg.fill ins(%cst_694 : f16) outs(%636 : tensor<2x1024x1xf16>) -> tensor<2x1024x1xf16>
%753 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%751 : tensor<2x1024x640xf16>) outs(%752 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x1xf16>
%754 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%753 : tensor<2x1024x1xf16>) outs(%636 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_709 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x1xf16>
%755 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%754 : tensor<2x1024x1xf16>) outs(%636 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.truncf %cst_700 : f64 to f16
%4281 = arith.addf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x1024x1xf16>
%756 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%755 : tensor<2x1024x1xf16>) outs(%636 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.rsqrt %in : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x1xf16>
%757 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%756 : tensor<2x1024x1xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1024x640xf16>
%758 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%750, %757 : tensor<2x1024x640xf16>, tensor<2x1024x640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%759 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%758, %cst_118 : tensor<2x1024x640xf16>, tensor<640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%760 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%759, %cst_119 : tensor<2x1024x640xf16>, tensor<640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%761 = tensor.empty() : tensor<640x5120xf16>
%762 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_120 : tensor<5120x640xf16>) outs(%761 : tensor<640x5120xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<640x5120xf16>
%collapsed_870 = tensor.collapse_shape %760 [[0, 1], [2]] : tensor<2x1024x640xf16> into tensor<2048x640xf16>
%763 = tensor.empty() : tensor<2048x5120xf16>
%764 = linalg.fill ins(%cst_694 : f16) outs(%763 : tensor<2048x5120xf16>) -> tensor<2048x5120xf16>
%765 = linalg.matmul ins(%collapsed_870, %762 : tensor<2048x640xf16>, tensor<640x5120xf16>) outs(%764 : tensor<2048x5120xf16>) -> tensor<2048x5120xf16>
%766 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_121, %765 : tensor<5120xf16>, tensor<2048x5120xf16>) outs(%763 : tensor<2048x5120xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2048x5120xf16>
%expanded_871 = tensor.expand_shape %766 [[0, 1], [2]] : tensor<2048x5120xf16> into tensor<2x1024x5120xf16>
%extracted_slice_872 = tensor.extract_slice %expanded_871[0, 0, 0] [2, 1024, 2560] [1, 1, 1] : tensor<2x1024x5120xf16> to tensor<2x1024x2560xf16>
%extracted_slice_873 = tensor.extract_slice %expanded_871[0, 0, 2560] [2, 1024, 2560] [1, 1, 1] : tensor<2x1024x5120xf16> to tensor<2x1024x2560xf16>
%767 = tensor.empty() : tensor<2x1024x2560xf16>
%768 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%extracted_slice_873 : tensor<2x1024x2560xf16>) outs(%767 : tensor<2x1024x2560xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.sqrt %cst_697 : f16
%4281 = arith.divf %in, %4280 : f16
%4282 = math.erf %4281 : f16
%4283 = arith.addf %4282, %cst_695 : f16
%4284 = arith.mulf %4283, %cst_698 : f16
%4285 = arith.mulf %in, %4284 : f16
linalg.yield %4285 : f16
} -> tensor<2x1024x2560xf16>
%769 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%extracted_slice_872, %768 : tensor<2x1024x2560xf16>, tensor<2x1024x2560xf16>) outs(%767 : tensor<2x1024x2560xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x2560xf16>
%770 = tensor.empty() : tensor<2560x640xf16>
%771 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_122 : tensor<640x2560xf16>) outs(%770 : tensor<2560x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2560x640xf16>
%collapsed_874 = tensor.collapse_shape %769 [[0, 1], [2]] : tensor<2x1024x2560xf16> into tensor<2048x2560xf16>
%772 = linalg.fill ins(%cst_694 : f16) outs(%655 : tensor<2048x640xf16>) -> tensor<2048x640xf16>
%773 = linalg.matmul ins(%collapsed_874, %771 : tensor<2048x2560xf16>, tensor<2560x640xf16>) outs(%772 : tensor<2048x640xf16>) -> tensor<2048x640xf16>
%774 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_123, %773 : tensor<640xf16>, tensor<2048x640xf16>) outs(%655 : tensor<2048x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2048x640xf16>
%expanded_875 = tensor.expand_shape %774 [[0, 1], [2]] : tensor<2048x640xf16> into tensor<2x1024x640xf16>
%775 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%expanded_875, %745 : tensor<2x1024x640xf16>, tensor<2x1024x640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%expanded_876 = tensor.expand_shape %775 [[0], [1, 2], [3]] : tensor<2x1024x640xf16> into tensor<2x32x32x640xf16>
%776 = linalg.generic {indexing_maps = [#map11, #map22], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_876 : tensor<2x32x32x640xf16>) outs(%555 : tensor<2x640x32x32xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x640x32x32xf16>
%777 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_125 : tensor<640xf16>) outs(%555 : tensor<2x640x32x32xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x640x32x32xf16>
%778 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%776, %cst_124 : tensor<2x640x32x32xf16>, tensor<640x640x1x1xf16>) outs(%777 : tensor<2x640x32x32xf16>) -> tensor<2x640x32x32xf16>
%779 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%778, %604 : tensor<2x640x32x32xf16>, tensor<2x640x32x32xf16>) outs(%555 : tensor<2x640x32x32xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x640x32x32xf16>
%collapsed_877 = tensor.collapse_shape %779 [[0], [1], [2, 3]] : tensor<2x640x32x32xf16> into tensor<2x640x1024xf16>
%expanded_878 = tensor.expand_shape %collapsed_877 [[0], [1, 2], [3]] : tensor<2x640x1024xf16> into tensor<2x32x20x1024xf16>
%780 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%781 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%780 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%782 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%781 : tensor<f32>) outs(%569 : tensor<2x32x20x1024xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x20x1024xf32>
%783 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_878 : tensor<2x32x20x1024xf16>) outs(%782 : tensor<2x32x20x1024xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x20x1024xf32>
%784 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%783 : tensor<2x32x20x1024xf32>) outs(%572 : tensor<2x32x20x1024xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x20x1024xf64>
%785 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%786 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%784 : tensor<2x32x20x1024xf64>) outs(%785 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%787 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%786 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_707 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%788 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%784, %787 : tensor<2x32x20x1024xf64>, tensor<2x32x1x1xf64>) outs(%572 : tensor<2x32x20x1024xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x20x1024xf64>
%789 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%788 : tensor<2x32x20x1024xf64>) outs(%572 : tensor<2x32x20x1024xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x20x1024xf64>
%790 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%791 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%789 : tensor<2x32x20x1024xf64>) outs(%790 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%792 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%791 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_707 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%793 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%792 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%794 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%795 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%783 : tensor<2x32x20x1024xf32>) outs(%794 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%796 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%795 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_708 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%797 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%793, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%798 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%797 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%799 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_878, %796 : tensor<2x32x20x1024xf16>, tensor<2x32x1x1xf32>) outs(%569 : tensor<2x32x20x1024xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x20x1024xf32>
%800 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%799, %798 : tensor<2x32x20x1024xf32>, tensor<2x32x1x1xf32>) outs(%569 : tensor<2x32x20x1024xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x20x1024xf32>
%collapsed_879 = tensor.collapse_shape %800 [[0], [1, 2], [3]] : tensor<2x32x20x1024xf32> into tensor<2x640x1024xf32>
%expanded_880 = tensor.expand_shape %collapsed_879 [[0], [1], [2, 3]] : tensor<2x640x1024xf32> into tensor<2x640x32x32xf32>
%expanded_881 = tensor.expand_shape %cst_126 [[0, 1, 2]] : tensor<640xf16> into tensor<640x1x1xf16>
%801 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_880, %expanded_881 : tensor<2x640x32x32xf32>, tensor<640x1x1xf16>) outs(%590 : tensor<2x640x32x32xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x640x32x32xf32>
%expanded_882 = tensor.expand_shape %cst_127 [[0, 1, 2]] : tensor<640xf16> into tensor<640x1x1xf16>
%802 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%801, %expanded_882 : tensor<2x640x32x32xf32>, tensor<640x1x1xf16>) outs(%590 : tensor<2x640x32x32xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x640x32x32xf32>
%803 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%804 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%803 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%805 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%804 : tensor<f16>) outs(%555 : tensor<2x640x32x32xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x640x32x32xf16>
%806 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%802 : tensor<2x640x32x32xf32>) outs(%805 : tensor<2x640x32x32xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x640x32x32xf16>
%807 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%806 : tensor<2x640x32x32xf16>) outs(%555 : tensor<2x640x32x32xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x640x32x32xf16>
%808 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%807, %806 : tensor<2x640x32x32xf16>, tensor<2x640x32x32xf16>) outs(%555 : tensor<2x640x32x32xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x640x32x32xf16>
%padded_883 = tensor.pad %808 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x640x32x32xf16> to tensor<2x640x34x34xf16>
%809 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_129 : tensor<640xf16>) outs(%555 : tensor<2x640x32x32xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x640x32x32xf16>
%810 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_883, %cst_128 : tensor<2x640x34x34xf16>, tensor<640x640x3x3xf16>) outs(%809 : tensor<2x640x32x32xf16>) -> tensor<2x640x32x32xf16>
%811 = linalg.generic {indexing_maps = [#map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%40 : tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280xf16>
%812 = linalg.generic {indexing_maps = [#map5, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%811, %40 : tensor<2x1280xf16>, tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280xf16>
%813 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_130 : tensor<640x1280xf16>) outs(%560 : tensor<1280x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x640xf16>
%814 = linalg.fill ins(%cst_694 : f16) outs(%562 : tensor<2x640xf16>) -> tensor<2x640xf16>
%815 = linalg.matmul ins(%812, %813 : tensor<2x1280xf16>, tensor<1280x640xf16>) outs(%814 : tensor<2x640xf16>) -> tensor<2x640xf16>
%816 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_131, %815 : tensor<640xf16>, tensor<2x640xf16>) outs(%562 : tensor<2x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x640xf16>
%expanded_884 = tensor.expand_shape %816 [[0], [1, 2, 3]] : tensor<2x640xf16> into tensor<2x640x1x1xf16>
%817 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%810, %expanded_884 : tensor<2x640x32x32xf16>, tensor<2x640x1x1xf16>) outs(%555 : tensor<2x640x32x32xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x640x32x32xf16>
%collapsed_885 = tensor.collapse_shape %817 [[0], [1], [2, 3]] : tensor<2x640x32x32xf16> into tensor<2x640x1024xf16>
%expanded_886 = tensor.expand_shape %collapsed_885 [[0], [1, 2], [3]] : tensor<2x640x1024xf16> into tensor<2x32x20x1024xf16>
%818 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%819 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%818 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%820 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%819 : tensor<f32>) outs(%569 : tensor<2x32x20x1024xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x20x1024xf32>
%821 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_886 : tensor<2x32x20x1024xf16>) outs(%820 : tensor<2x32x20x1024xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x20x1024xf32>
%822 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%821 : tensor<2x32x20x1024xf32>) outs(%572 : tensor<2x32x20x1024xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x20x1024xf64>
%823 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%824 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%822 : tensor<2x32x20x1024xf64>) outs(%823 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%825 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%824 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_707 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%826 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%822, %825 : tensor<2x32x20x1024xf64>, tensor<2x32x1x1xf64>) outs(%572 : tensor<2x32x20x1024xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x20x1024xf64>
%827 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%826 : tensor<2x32x20x1024xf64>) outs(%572 : tensor<2x32x20x1024xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x20x1024xf64>
%828 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%829 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%827 : tensor<2x32x20x1024xf64>) outs(%828 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%830 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%829 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_707 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%831 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%830 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%832 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%833 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%821 : tensor<2x32x20x1024xf32>) outs(%832 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%834 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%833 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_708 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%835 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%831, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%836 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%835 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%837 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_886, %834 : tensor<2x32x20x1024xf16>, tensor<2x32x1x1xf32>) outs(%569 : tensor<2x32x20x1024xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x20x1024xf32>
%838 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%837, %836 : tensor<2x32x20x1024xf32>, tensor<2x32x1x1xf32>) outs(%569 : tensor<2x32x20x1024xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x20x1024xf32>
%collapsed_887 = tensor.collapse_shape %838 [[0], [1, 2], [3]] : tensor<2x32x20x1024xf32> into tensor<2x640x1024xf32>
%expanded_888 = tensor.expand_shape %collapsed_887 [[0], [1], [2, 3]] : tensor<2x640x1024xf32> into tensor<2x640x32x32xf32>
%expanded_889 = tensor.expand_shape %cst_132 [[0, 1, 2]] : tensor<640xf16> into tensor<640x1x1xf16>
%839 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_888, %expanded_889 : tensor<2x640x32x32xf32>, tensor<640x1x1xf16>) outs(%590 : tensor<2x640x32x32xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x640x32x32xf32>
%expanded_890 = tensor.expand_shape %cst_133 [[0, 1, 2]] : tensor<640xf16> into tensor<640x1x1xf16>
%840 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%839, %expanded_890 : tensor<2x640x32x32xf32>, tensor<640x1x1xf16>) outs(%590 : tensor<2x640x32x32xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x640x32x32xf32>
%841 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%842 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%841 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%843 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%842 : tensor<f16>) outs(%555 : tensor<2x640x32x32xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x640x32x32xf16>
%844 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%840 : tensor<2x640x32x32xf32>) outs(%843 : tensor<2x640x32x32xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x640x32x32xf16>
%845 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%844 : tensor<2x640x32x32xf16>) outs(%555 : tensor<2x640x32x32xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x640x32x32xf16>
%846 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%845, %844 : tensor<2x640x32x32xf16>, tensor<2x640x32x32xf16>) outs(%555 : tensor<2x640x32x32xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x640x32x32xf16>
%padded_891 = tensor.pad %846 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x640x32x32xf16> to tensor<2x640x34x34xf16>
%847 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_135 : tensor<640xf16>) outs(%555 : tensor<2x640x32x32xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x640x32x32xf16>
%848 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_891, %cst_134 : tensor<2x640x34x34xf16>, tensor<640x640x3x3xf16>) outs(%847 : tensor<2x640x32x32xf16>) -> tensor<2x640x32x32xf16>
%849 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%779, %848 : tensor<2x640x32x32xf16>, tensor<2x640x32x32xf16>) outs(%555 : tensor<2x640x32x32xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x640x32x32xf16>
%850 = linalg.generic {indexing_maps = [#map11, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%849, %cst_3 : tensor<2x640x32x32xf16>, tensor<f64>) outs(%555 : tensor<2x640x32x32xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.divf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x640x32x32xf16>
%collapsed_892 = tensor.collapse_shape %850 [[0], [1], [2, 3]] : tensor<2x640x32x32xf16> into tensor<2x640x1024xf16>
%expanded_893 = tensor.expand_shape %collapsed_892 [[0], [1, 2], [3]] : tensor<2x640x1024xf16> into tensor<2x32x20x1024xf16>
%851 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%852 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%851 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%853 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%852 : tensor<f32>) outs(%569 : tensor<2x32x20x1024xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x20x1024xf32>
%854 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_893 : tensor<2x32x20x1024xf16>) outs(%853 : tensor<2x32x20x1024xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x20x1024xf32>
%855 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%854 : tensor<2x32x20x1024xf32>) outs(%572 : tensor<2x32x20x1024xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x20x1024xf64>
%856 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%857 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%855 : tensor<2x32x20x1024xf64>) outs(%856 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%858 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%857 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_707 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%859 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%855, %858 : tensor<2x32x20x1024xf64>, tensor<2x32x1x1xf64>) outs(%572 : tensor<2x32x20x1024xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x20x1024xf64>
%860 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%859 : tensor<2x32x20x1024xf64>) outs(%572 : tensor<2x32x20x1024xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x20x1024xf64>
%861 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%862 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%860 : tensor<2x32x20x1024xf64>) outs(%861 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%863 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%862 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_707 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%864 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%863 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%865 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%866 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%854 : tensor<2x32x20x1024xf32>) outs(%865 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%867 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%866 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_708 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%868 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%864, %cst_2 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%869 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%868 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%870 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_893, %867 : tensor<2x32x20x1024xf16>, tensor<2x32x1x1xf32>) outs(%569 : tensor<2x32x20x1024xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x20x1024xf32>
%871 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%870, %869 : tensor<2x32x20x1024xf32>, tensor<2x32x1x1xf32>) outs(%569 : tensor<2x32x20x1024xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x20x1024xf32>
%collapsed_894 = tensor.collapse_shape %871 [[0], [1, 2], [3]] : tensor<2x32x20x1024xf32> into tensor<2x640x1024xf32>
%expanded_895 = tensor.expand_shape %collapsed_894 [[0], [1], [2, 3]] : tensor<2x640x1024xf32> into tensor<2x640x32x32xf32>
%expanded_896 = tensor.expand_shape %cst_136 [[0, 1, 2]] : tensor<640xf16> into tensor<640x1x1xf16>
%872 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_895, %expanded_896 : tensor<2x640x32x32xf32>, tensor<640x1x1xf16>) outs(%590 : tensor<2x640x32x32xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x640x32x32xf32>
%expanded_897 = tensor.expand_shape %cst_137 [[0, 1, 2]] : tensor<640xf16> into tensor<640x1x1xf16>
%873 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%872, %expanded_897 : tensor<2x640x32x32xf32>, tensor<640x1x1xf16>) outs(%590 : tensor<2x640x32x32xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x640x32x32xf32>
%874 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%875 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%874 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%876 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%875 : tensor<f16>) outs(%555 : tensor<2x640x32x32xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x640x32x32xf16>
%877 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%873 : tensor<2x640x32x32xf32>) outs(%876 : tensor<2x640x32x32xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x640x32x32xf16>
%878 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_139 : tensor<640xf16>) outs(%555 : tensor<2x640x32x32xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x640x32x32xf16>
%879 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%877, %cst_138 : tensor<2x640x32x32xf16>, tensor<640x640x1x1xf16>) outs(%878 : tensor<2x640x32x32xf16>) -> tensor<2x640x32x32xf16>
%880 = linalg.generic {indexing_maps = [#map11, #map15], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%879 : tensor<2x640x32x32xf16>) outs(%634 : tensor<2x32x32x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x32x32x640xf16>
%collapsed_898 = tensor.collapse_shape %880 [[0], [1, 2], [3]] : tensor<2x32x32x640xf16> into tensor<2x1024x640xf16>
%881 = linalg.fill ins(%cst_694 : f16) outs(%636 : tensor<2x1024x1xf16>) -> tensor<2x1024x1xf16>
%882 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%collapsed_898 : tensor<2x1024x640xf16>) outs(%881 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x1xf16>
%883 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%882 : tensor<2x1024x1xf16>) outs(%636 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_709 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x1xf16>
%884 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%883 : tensor<2x1024x1xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1024x640xf16>
%885 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%collapsed_898, %884 : tensor<2x1024x640xf16>, tensor<2x1024x640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%886 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%885 : tensor<2x1024x640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.mulf %in, %in : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%887 = linalg.fill ins(%cst_694 : f16) outs(%636 : tensor<2x1024x1xf16>) -> tensor<2x1024x1xf16>
%888 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%886 : tensor<2x1024x640xf16>) outs(%887 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x1xf16>
%889 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%888 : tensor<2x1024x1xf16>) outs(%636 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_709 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x1xf16>
%890 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%889 : tensor<2x1024x1xf16>) outs(%636 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.truncf %cst_700 : f64 to f16
%4281 = arith.addf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x1024x1xf16>
%891 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%890 : tensor<2x1024x1xf16>) outs(%636 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.rsqrt %in : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x1xf16>
%892 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%891 : tensor<2x1024x1xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1024x640xf16>
%893 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%885, %892 : tensor<2x1024x640xf16>, tensor<2x1024x640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%894 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%893, %cst_140 : tensor<2x1024x640xf16>, tensor<640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%895 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%894, %cst_141 : tensor<2x1024x640xf16>, tensor<640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%896 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_142 : tensor<640x640xf16>) outs(%653 : tensor<640x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<640x640xf16>
%collapsed_899 = tensor.collapse_shape %895 [[0, 1], [2]] : tensor<2x1024x640xf16> into tensor<2048x640xf16>
%897 = linalg.fill ins(%cst_694 : f16) outs(%655 : tensor<2048x640xf16>) -> tensor<2048x640xf16>
%898 = linalg.matmul ins(%collapsed_899, %896 : tensor<2048x640xf16>, tensor<640x640xf16>) outs(%897 : tensor<2048x640xf16>) -> tensor<2048x640xf16>
%899 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_143 : tensor<640x640xf16>) outs(%653 : tensor<640x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<640x640xf16>
%900 = linalg.fill ins(%cst_694 : f16) outs(%655 : tensor<2048x640xf16>) -> tensor<2048x640xf16>
%901 = linalg.matmul ins(%collapsed_899, %899 : tensor<2048x640xf16>, tensor<640x640xf16>) outs(%900 : tensor<2048x640xf16>) -> tensor<2048x640xf16>
%902 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_144 : tensor<640x640xf16>) outs(%653 : tensor<640x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<640x640xf16>
%903 = linalg.fill ins(%cst_694 : f16) outs(%655 : tensor<2048x640xf16>) -> tensor<2048x640xf16>
%904 = linalg.matmul ins(%collapsed_899, %902 : tensor<2048x640xf16>, tensor<640x640xf16>) outs(%903 : tensor<2048x640xf16>) -> tensor<2048x640xf16>
%expanded_900 = tensor.expand_shape %898 [[0, 1], [2, 3]] : tensor<2048x640xf16> into tensor<2x1024x8x80xf16>
%905 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_900 : tensor<2x1024x8x80xf16>) outs(%664 : tensor<2x8x1024x80xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x1024x80xf16>
%collapsed_901 = tensor.collapse_shape %905 [[0, 1], [2], [3]] : tensor<2x8x1024x80xf16> into tensor<16x1024x80xf16>
%expanded_902 = tensor.expand_shape %901 [[0, 1], [2, 3]] : tensor<2048x640xf16> into tensor<2x1024x8x80xf16>
%906 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_902 : tensor<2x1024x8x80xf16>) outs(%664 : tensor<2x8x1024x80xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x1024x80xf16>
%collapsed_903 = tensor.collapse_shape %906 [[0, 1], [2], [3]] : tensor<2x8x1024x80xf16> into tensor<16x1024x80xf16>
%expanded_904 = tensor.expand_shape %904 [[0, 1], [2, 3]] : tensor<2048x640xf16> into tensor<2x1024x8x80xf16>
%907 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_904 : tensor<2x1024x8x80xf16>) outs(%664 : tensor<2x8x1024x80xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x1024x80xf16>
%collapsed_905 = tensor.collapse_shape %907 [[0, 1], [2], [3]] : tensor<2x8x1024x80xf16> into tensor<16x1024x80xf16>
%908 = linalg.generic {indexing_maps = [#map16, #map20], iterator_types = ["parallel", "parallel", "parallel"]} ins(%collapsed_903 : tensor<16x1024x80xf16>) outs(%668 : tensor<16x80x1024xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<16x80x1024xf16>
%909 = linalg.fill ins(%cst_694 : f16) outs(%670 : tensor<16x1024x1024xf16>) -> tensor<16x1024x1024xf16>
%910 = linalg.batch_matmul ins(%collapsed_901, %908 : tensor<16x1024x80xf16>, tensor<16x80x1024xf16>) outs(%909 : tensor<16x1024x1024xf16>) -> tensor<16x1024x1024xf16>
%911 = linalg.generic {indexing_maps = [#map16, #map21, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%910, %cst_0 : tensor<16x1024x1024xf16>, tensor<f64>) outs(%670 : tensor<16x1024x1024xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.mulf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<16x1024x1024xf16>
%912 = linalg.fill ins(%c0_i64 : i64) outs(%674 : tensor<16x1024x1xi64>) -> tensor<16x1024x1xi64>
%913 = linalg.fill ins(%cst_696 : f16) outs(%676 : tensor<16x1024x1xf16>) -> tensor<16x1024x1xf16>
%914:2 = linalg.generic {indexing_maps = [#map16, #map17, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%911 : tensor<16x1024x1024xf16>) outs(%913, %912 : tensor<16x1024x1xf16>, tensor<16x1024x1xi64>) {
^bb0(%in: f16, %out: f16, %out_1640: i64):
%4280 = linalg.index 2 : index
%4281 = arith.index_cast %4280 : index to i64
%4282 = arith.maxf %in, %out : f16
%4283 = arith.cmpf ogt, %in, %out : f16
%4284 = arith.select %4283, %4281, %out_1640 : i64
linalg.yield %4282, %4284 : f16, i64
} -> (tensor<16x1024x1xf16>, tensor<16x1024x1xi64>)
%915 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%911, %914#0 : tensor<16x1024x1024xf16>, tensor<16x1024x1xf16>) outs(%670 : tensor<16x1024x1024xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x1024x1024xf16>
%916 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%915 : tensor<16x1024x1024xf16>) outs(%670 : tensor<16x1024x1024xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.exp %in : f16
linalg.yield %4280 : f16
} -> tensor<16x1024x1024xf16>
%917 = linalg.fill ins(%cst_694 : f16) outs(%676 : tensor<16x1024x1xf16>) -> tensor<16x1024x1xf16>
%918 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%916 : tensor<16x1024x1024xf16>) outs(%917 : tensor<16x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<16x1024x1xf16>
%919 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%916, %918 : tensor<16x1024x1024xf16>, tensor<16x1024x1xf16>) outs(%670 : tensor<16x1024x1024xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.divf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x1024x1024xf16>
%920 = linalg.fill ins(%cst_694 : f16) outs(%684 : tensor<16x1024x80xf16>) -> tensor<16x1024x80xf16>
%921 = linalg.batch_matmul ins(%919, %collapsed_905 : tensor<16x1024x1024xf16>, tensor<16x1024x80xf16>) outs(%920 : tensor<16x1024x80xf16>) -> tensor<16x1024x80xf16>
%expanded_906 = tensor.expand_shape %921 [[0, 1], [2], [3]] : tensor<16x1024x80xf16> into tensor<2x8x1024x80xf16>
%922 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_906 : tensor<2x8x1024x80xf16>) outs(%687 : tensor<2x1024x8x80xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1024x8x80xf16>
%923 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_145 : tensor<640x640xf16>) outs(%653 : tensor<640x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<640x640xf16>
%collapsed_907 = tensor.collapse_shape %922 [[0, 1], [2, 3]] : tensor<2x1024x8x80xf16> into tensor<2048x640xf16>
%924 = linalg.fill ins(%cst_694 : f16) outs(%655 : tensor<2048x640xf16>) -> tensor<2048x640xf16>
%925 = linalg.matmul ins(%collapsed_907, %923 : tensor<2048x640xf16>, tensor<640x640xf16>) outs(%924 : tensor<2048x640xf16>) -> tensor<2048x640xf16>
%926 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_146, %925 : tensor<640xf16>, tensor<2048x640xf16>) outs(%655 : tensor<2048x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2048x640xf16>
%expanded_908 = tensor.expand_shape %926 [[0, 1], [2]] : tensor<2048x640xf16> into tensor<2x1024x640xf16>
%927 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%expanded_908, %collapsed_898 : tensor<2x1024x640xf16>, tensor<2x1024x640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%928 = linalg.fill ins(%cst_694 : f16) outs(%636 : tensor<2x1024x1xf16>) -> tensor<2x1024x1xf16>
%929 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%927 : tensor<2x1024x640xf16>) outs(%928 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x1xf16>
%930 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%929 : tensor<2x1024x1xf16>) outs(%636 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_709 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x1xf16>
%931 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%930 : tensor<2x1024x1xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1024x640xf16>
%932 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%927, %931 : tensor<2x1024x640xf16>, tensor<2x1024x640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%933 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%932 : tensor<2x1024x640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.mulf %in, %in : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%934 = linalg.fill ins(%cst_694 : f16) outs(%636 : tensor<2x1024x1xf16>) -> tensor<2x1024x1xf16>
%935 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%933 : tensor<2x1024x640xf16>) outs(%934 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x1xf16>
%936 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%935 : tensor<2x1024x1xf16>) outs(%636 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_709 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x1xf16>
%937 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%936 : tensor<2x1024x1xf16>) outs(%636 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.truncf %cst_700 : f64 to f16
%4281 = arith.addf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x1024x1xf16>
%938 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%937 : tensor<2x1024x1xf16>) outs(%636 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.rsqrt %in : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x1xf16>
%939 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%938 : tensor<2x1024x1xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1024x640xf16>
%940 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%932, %939 : tensor<2x1024x640xf16>, tensor<2x1024x640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%941 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%940, %cst_147 : tensor<2x1024x640xf16>, tensor<640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%942 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%941, %cst_148 : tensor<2x1024x640xf16>, tensor<640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%943 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_149 : tensor<640x640xf16>) outs(%653 : tensor<640x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<640x640xf16>
%collapsed_909 = tensor.collapse_shape %942 [[0, 1], [2]] : tensor<2x1024x640xf16> into tensor<2048x640xf16>
%944 = linalg.fill ins(%cst_694 : f16) outs(%655 : tensor<2048x640xf16>) -> tensor<2048x640xf16>
%945 = linalg.matmul ins(%collapsed_909, %943 : tensor<2048x640xf16>, tensor<640x640xf16>) outs(%944 : tensor<2048x640xf16>) -> tensor<2048x640xf16>
%946 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_150 : tensor<640x768xf16>) outs(%712 : tensor<768x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<768x640xf16>
%947 = linalg.fill ins(%cst_694 : f16) outs(%714 : tensor<154x640xf16>) -> tensor<154x640xf16>
%948 = linalg.matmul ins(%collapsed_761, %946 : tensor<154x768xf16>, tensor<768x640xf16>) outs(%947 : tensor<154x640xf16>) -> tensor<154x640xf16>
%949 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_151 : tensor<640x768xf16>) outs(%712 : tensor<768x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<768x640xf16>
%950 = linalg.fill ins(%cst_694 : f16) outs(%714 : tensor<154x640xf16>) -> tensor<154x640xf16>
%951 = linalg.matmul ins(%collapsed_761, %949 : tensor<154x768xf16>, tensor<768x640xf16>) outs(%950 : tensor<154x640xf16>) -> tensor<154x640xf16>
%expanded_910 = tensor.expand_shape %945 [[0, 1], [2, 3]] : tensor<2048x640xf16> into tensor<2x1024x8x80xf16>
%952 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_910 : tensor<2x1024x8x80xf16>) outs(%664 : tensor<2x8x1024x80xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x1024x80xf16>
%collapsed_911 = tensor.collapse_shape %952 [[0, 1], [2], [3]] : tensor<2x8x1024x80xf16> into tensor<16x1024x80xf16>
%expanded_912 = tensor.expand_shape %948 [[0, 1], [2, 3]] : tensor<154x640xf16> into tensor<2x77x8x80xf16>
%953 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_912 : tensor<2x77x8x80xf16>) outs(%721 : tensor<2x8x77x80xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x77x80xf16>
%collapsed_913 = tensor.collapse_shape %953 [[0, 1], [2], [3]] : tensor<2x8x77x80xf16> into tensor<16x77x80xf16>
%expanded_914 = tensor.expand_shape %951 [[0, 1], [2, 3]] : tensor<154x640xf16> into tensor<2x77x8x80xf16>
%954 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_914 : tensor<2x77x8x80xf16>) outs(%721 : tensor<2x8x77x80xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x77x80xf16>
%collapsed_915 = tensor.collapse_shape %954 [[0, 1], [2], [3]] : tensor<2x8x77x80xf16> into tensor<16x77x80xf16>
%955 = linalg.generic {indexing_maps = [#map16, #map20], iterator_types = ["parallel", "parallel", "parallel"]} ins(%collapsed_913 : tensor<16x77x80xf16>) outs(%724 : tensor<16x80x77xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<16x80x77xf16>
%956 = linalg.fill ins(%cst_694 : f16) outs(%726 : tensor<16x1024x77xf16>) -> tensor<16x1024x77xf16>
%957 = linalg.batch_matmul ins(%collapsed_911, %955 : tensor<16x1024x80xf16>, tensor<16x80x77xf16>) outs(%956 : tensor<16x1024x77xf16>) -> tensor<16x1024x77xf16>
%958 = linalg.generic {indexing_maps = [#map16, #map21, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%957, %cst_0 : tensor<16x1024x77xf16>, tensor<f64>) outs(%726 : tensor<16x1024x77xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.mulf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<16x1024x77xf16>
%959 = linalg.fill ins(%c0_i64 : i64) outs(%674 : tensor<16x1024x1xi64>) -> tensor<16x1024x1xi64>
%960 = linalg.fill ins(%cst_696 : f16) outs(%676 : tensor<16x1024x1xf16>) -> tensor<16x1024x1xf16>
%961:2 = linalg.generic {indexing_maps = [#map16, #map17, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%958 : tensor<16x1024x77xf16>) outs(%960, %959 : tensor<16x1024x1xf16>, tensor<16x1024x1xi64>) {
^bb0(%in: f16, %out: f16, %out_1640: i64):
%4280 = linalg.index 2 : index
%4281 = arith.index_cast %4280 : index to i64
%4282 = arith.maxf %in, %out : f16
%4283 = arith.cmpf ogt, %in, %out : f16
%4284 = arith.select %4283, %4281, %out_1640 : i64
linalg.yield %4282, %4284 : f16, i64
} -> (tensor<16x1024x1xf16>, tensor<16x1024x1xi64>)
%962 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%958, %961#0 : tensor<16x1024x77xf16>, tensor<16x1024x1xf16>) outs(%726 : tensor<16x1024x77xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x1024x77xf16>
%963 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%962 : tensor<16x1024x77xf16>) outs(%726 : tensor<16x1024x77xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.exp %in : f16
linalg.yield %4280 : f16
} -> tensor<16x1024x77xf16>
%964 = linalg.fill ins(%cst_694 : f16) outs(%676 : tensor<16x1024x1xf16>) -> tensor<16x1024x1xf16>
%965 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%963 : tensor<16x1024x77xf16>) outs(%964 : tensor<16x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<16x1024x1xf16>
%966 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%963, %965 : tensor<16x1024x77xf16>, tensor<16x1024x1xf16>) outs(%726 : tensor<16x1024x77xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.divf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x1024x77xf16>
%967 = linalg.fill ins(%cst_694 : f16) outs(%684 : tensor<16x1024x80xf16>) -> tensor<16x1024x80xf16>
%968 = linalg.batch_matmul ins(%966, %collapsed_915 : tensor<16x1024x77xf16>, tensor<16x77x80xf16>) outs(%967 : tensor<16x1024x80xf16>) -> tensor<16x1024x80xf16>
%expanded_916 = tensor.expand_shape %968 [[0, 1], [2], [3]] : tensor<16x1024x80xf16> into tensor<2x8x1024x80xf16>
%969 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_916 : tensor<2x8x1024x80xf16>) outs(%687 : tensor<2x1024x8x80xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1024x8x80xf16>
%970 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_152 : tensor<640x640xf16>) outs(%653 : tensor<640x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<640x640xf16>
%collapsed_917 = tensor.collapse_shape %969 [[0, 1], [2, 3]] : tensor<2x1024x8x80xf16> into tensor<2048x640xf16>
%971 = linalg.fill ins(%cst_694 : f16) outs(%655 : tensor<2048x640xf16>) -> tensor<2048x640xf16>
%972 = linalg.matmul ins(%collapsed_917, %970 : tensor<2048x640xf16>, tensor<640x640xf16>) outs(%971 : tensor<2048x640xf16>) -> tensor<2048x640xf16>
%973 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_153, %972 : tensor<640xf16>, tensor<2048x640xf16>) outs(%655 : tensor<2048x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2048x640xf16>
%expanded_918 = tensor.expand_shape %973 [[0, 1], [2]] : tensor<2048x640xf16> into tensor<2x1024x640xf16>
%974 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%expanded_918, %927 : tensor<2x1024x640xf16>, tensor<2x1024x640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%975 = linalg.fill ins(%cst_694 : f16) outs(%636 : tensor<2x1024x1xf16>) -> tensor<2x1024x1xf16>
%976 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%974 : tensor<2x1024x640xf16>) outs(%975 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x1xf16>
%977 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%976 : tensor<2x1024x1xf16>) outs(%636 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_709 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x1xf16>
%978 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%977 : tensor<2x1024x1xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1024x640xf16>
%979 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%974, %978 : tensor<2x1024x640xf16>, tensor<2x1024x640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%980 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%979 : tensor<2x1024x640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.mulf %in, %in : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%981 = linalg.fill ins(%cst_694 : f16) outs(%636 : tensor<2x1024x1xf16>) -> tensor<2x1024x1xf16>
%982 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%980 : tensor<2x1024x640xf16>) outs(%981 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x1xf16>
%983 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%982 : tensor<2x1024x1xf16>) outs(%636 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_709 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x1xf16>
%984 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%983 : tensor<2x1024x1xf16>) outs(%636 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.truncf %cst_700 : f64 to f16
%4281 = arith.addf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x1024x1xf16>
%985 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%984 : tensor<2x1024x1xf16>) outs(%636 : tensor<2x1024x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.rsqrt %in : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x1xf16>
%986 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%985 : tensor<2x1024x1xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1024x640xf16>
%987 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%979, %986 : tensor<2x1024x640xf16>, tensor<2x1024x640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%988 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%987, %cst_154 : tensor<2x1024x640xf16>, tensor<640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%989 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%988, %cst_155 : tensor<2x1024x640xf16>, tensor<640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%990 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_156 : tensor<5120x640xf16>) outs(%761 : tensor<640x5120xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<640x5120xf16>
%collapsed_919 = tensor.collapse_shape %989 [[0, 1], [2]] : tensor<2x1024x640xf16> into tensor<2048x640xf16>
%991 = linalg.fill ins(%cst_694 : f16) outs(%763 : tensor<2048x5120xf16>) -> tensor<2048x5120xf16>
%992 = linalg.matmul ins(%collapsed_919, %990 : tensor<2048x640xf16>, tensor<640x5120xf16>) outs(%991 : tensor<2048x5120xf16>) -> tensor<2048x5120xf16>
%993 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_157, %992 : tensor<5120xf16>, tensor<2048x5120xf16>) outs(%763 : tensor<2048x5120xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2048x5120xf16>
%expanded_920 = tensor.expand_shape %993 [[0, 1], [2]] : tensor<2048x5120xf16> into tensor<2x1024x5120xf16>
%extracted_slice_921 = tensor.extract_slice %expanded_920[0, 0, 0] [2, 1024, 2560] [1, 1, 1] : tensor<2x1024x5120xf16> to tensor<2x1024x2560xf16>
%extracted_slice_922 = tensor.extract_slice %expanded_920[0, 0, 2560] [2, 1024, 2560] [1, 1, 1] : tensor<2x1024x5120xf16> to tensor<2x1024x2560xf16>
%994 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%extracted_slice_922 : tensor<2x1024x2560xf16>) outs(%767 : tensor<2x1024x2560xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.sqrt %cst_697 : f16
%4281 = arith.divf %in, %4280 : f16
%4282 = math.erf %4281 : f16
%4283 = arith.addf %4282, %cst_695 : f16
%4284 = arith.mulf %4283, %cst_698 : f16
%4285 = arith.mulf %in, %4284 : f16
linalg.yield %4285 : f16
} -> tensor<2x1024x2560xf16>
%995 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%extracted_slice_921, %994 : tensor<2x1024x2560xf16>, tensor<2x1024x2560xf16>) outs(%767 : tensor<2x1024x2560xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x2560xf16>
%996 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_158 : tensor<640x2560xf16>) outs(%770 : tensor<2560x640xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2560x640xf16>
%collapsed_923 = tensor.collapse_shape %995 [[0, 1], [2]] : tensor<2x1024x2560xf16> into tensor<2048x2560xf16>
%997 = linalg.fill ins(%cst_694 : f16) outs(%655 : tensor<2048x640xf16>) -> tensor<2048x640xf16>
%998 = linalg.matmul ins(%collapsed_923, %996 : tensor<2048x2560xf16>, tensor<2560x640xf16>) outs(%997 : tensor<2048x640xf16>) -> tensor<2048x640xf16>
%999 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_159, %998 : tensor<640xf16>, tensor<2048x640xf16>) outs(%655 : tensor<2048x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2048x640xf16>
%expanded_924 = tensor.expand_shape %999 [[0, 1], [2]] : tensor<2048x640xf16> into tensor<2x1024x640xf16>
%1000 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%expanded_924, %974 : tensor<2x1024x640xf16>, tensor<2x1024x640xf16>) outs(%640 : tensor<2x1024x640xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1024x640xf16>
%expanded_925 = tensor.expand_shape %1000 [[0], [1, 2], [3]] : tensor<2x1024x640xf16> into tensor<2x32x32x640xf16>
%1001 = linalg.generic {indexing_maps = [#map11, #map22], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_925 : tensor<2x32x32x640xf16>) outs(%555 : tensor<2x640x32x32xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x640x32x32xf16>
%1002 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_161 : tensor<640xf16>) outs(%555 : tensor<2x640x32x32xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x640x32x32xf16>
%1003 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%1001, %cst_160 : tensor<2x640x32x32xf16>, tensor<640x640x1x1xf16>) outs(%1002 : tensor<2x640x32x32xf16>) -> tensor<2x640x32x32xf16>
%1004 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1003, %850 : tensor<2x640x32x32xf16>, tensor<2x640x32x32xf16>) outs(%555 : tensor<2x640x32x32xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x640x32x32xf16>
%padded_926 = tensor.pad %1004 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x640x32x32xf16> to tensor<2x640x34x34xf16>
%1005 = tensor.empty() : tensor<2x640x16x16xf16>
%1006 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_163 : tensor<640xf16>) outs(%1005 : tensor<2x640x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x640x16x16xf16>
%1007 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>} ins(%padded_926, %cst_162 : tensor<2x640x34x34xf16>, tensor<640x640x3x3xf16>) outs(%1006 : tensor<2x640x16x16xf16>) -> tensor<2x640x16x16xf16>
%collapsed_927 = tensor.collapse_shape %1007 [[0], [1], [2, 3]] : tensor<2x640x16x16xf16> into tensor<2x640x256xf16>
%expanded_928 = tensor.expand_shape %collapsed_927 [[0], [1, 2], [3]] : tensor<2x640x256xf16> into tensor<2x32x20x256xf16>
%1008 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1009 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1008 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%1010 = tensor.empty() : tensor<2x32x20x256xf32>
%1011 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1009 : tensor<f32>) outs(%1010 : tensor<2x32x20x256xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x20x256xf32>
%1012 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_928 : tensor<2x32x20x256xf16>) outs(%1011 : tensor<2x32x20x256xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x20x256xf32>
%1013 = tensor.empty() : tensor<2x32x20x256xf64>
%1014 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1012 : tensor<2x32x20x256xf32>) outs(%1013 : tensor<2x32x20x256xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x20x256xf64>
%1015 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1016 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1014 : tensor<2x32x20x256xf64>) outs(%1015 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1017 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1016 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_710 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1018 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1014, %1017 : tensor<2x32x20x256xf64>, tensor<2x32x1x1xf64>) outs(%1013 : tensor<2x32x20x256xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x20x256xf64>
%1019 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1018 : tensor<2x32x20x256xf64>) outs(%1013 : tensor<2x32x20x256xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x20x256xf64>
%1020 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1021 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1019 : tensor<2x32x20x256xf64>) outs(%1020 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1022 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1021 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_710 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1023 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1022 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1024 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%1025 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1012 : tensor<2x32x20x256xf32>) outs(%1024 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1026 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1025 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_711 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1027 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1023, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%1028 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1027 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1029 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_928, %1026 : tensor<2x32x20x256xf16>, tensor<2x32x1x1xf32>) outs(%1010 : tensor<2x32x20x256xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x20x256xf32>
%1030 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1029, %1028 : tensor<2x32x20x256xf32>, tensor<2x32x1x1xf32>) outs(%1010 : tensor<2x32x20x256xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x20x256xf32>
%collapsed_929 = tensor.collapse_shape %1030 [[0], [1, 2], [3]] : tensor<2x32x20x256xf32> into tensor<2x640x256xf32>
%expanded_930 = tensor.expand_shape %collapsed_929 [[0], [1], [2, 3]] : tensor<2x640x256xf32> into tensor<2x640x16x16xf32>
%expanded_931 = tensor.expand_shape %cst_164 [[0, 1, 2]] : tensor<640xf16> into tensor<640x1x1xf16>
%1031 = tensor.empty() : tensor<2x640x16x16xf32>
%1032 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_930, %expanded_931 : tensor<2x640x16x16xf32>, tensor<640x1x1xf16>) outs(%1031 : tensor<2x640x16x16xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x640x16x16xf32>
%expanded_932 = tensor.expand_shape %cst_165 [[0, 1, 2]] : tensor<640xf16> into tensor<640x1x1xf16>
%1033 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1032, %expanded_932 : tensor<2x640x16x16xf32>, tensor<640x1x1xf16>) outs(%1031 : tensor<2x640x16x16xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x640x16x16xf32>
%1034 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1035 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1034 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%1036 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1035 : tensor<f16>) outs(%1005 : tensor<2x640x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x640x16x16xf16>
%1037 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1033 : tensor<2x640x16x16xf32>) outs(%1036 : tensor<2x640x16x16xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x640x16x16xf16>
%1038 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1037 : tensor<2x640x16x16xf16>) outs(%1005 : tensor<2x640x16x16xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x640x16x16xf16>
%1039 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1038, %1037 : tensor<2x640x16x16xf16>, tensor<2x640x16x16xf16>) outs(%1005 : tensor<2x640x16x16xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x640x16x16xf16>
%padded_933 = tensor.pad %1039 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x640x16x16xf16> to tensor<2x640x18x18xf16>
%1040 = tensor.empty() : tensor<2x1280x16x16xf16>
%1041 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_167 : tensor<1280xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%1042 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_933, %cst_166 : tensor<2x640x18x18xf16>, tensor<1280x640x3x3xf16>) outs(%1041 : tensor<2x1280x16x16xf16>) -> tensor<2x1280x16x16xf16>
%1043 = linalg.generic {indexing_maps = [#map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%40 : tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280xf16>
%1044 = linalg.generic {indexing_maps = [#map5, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%1043, %40 : tensor<2x1280xf16>, tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280xf16>
%1045 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_168 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%1046 = linalg.fill ins(%cst_694 : f16) outs(%30 : tensor<2x1280xf16>) -> tensor<2x1280xf16>
%1047 = linalg.matmul ins(%1044, %1045 : tensor<2x1280xf16>, tensor<1280x1280xf16>) outs(%1046 : tensor<2x1280xf16>) -> tensor<2x1280xf16>
%1048 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_169, %1047 : tensor<1280xf16>, tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280xf16>
%expanded_934 = tensor.expand_shape %1048 [[0], [1, 2, 3]] : tensor<2x1280xf16> into tensor<2x1280x1x1xf16>
%1049 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1042, %expanded_934 : tensor<2x1280x16x16xf16>, tensor<2x1280x1x1xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x16x16xf16>
%collapsed_935 = tensor.collapse_shape %1049 [[0], [1], [2, 3]] : tensor<2x1280x16x16xf16> into tensor<2x1280x256xf16>
%expanded_936 = tensor.expand_shape %collapsed_935 [[0], [1, 2], [3]] : tensor<2x1280x256xf16> into tensor<2x32x40x256xf16>
%1050 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1051 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1050 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%1052 = tensor.empty() : tensor<2x32x40x256xf32>
%1053 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1051 : tensor<f32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x40x256xf32>
%1054 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_936 : tensor<2x32x40x256xf16>) outs(%1053 : tensor<2x32x40x256xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x256xf32>
%1055 = tensor.empty() : tensor<2x32x40x256xf64>
%1056 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1054 : tensor<2x32x40x256xf32>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%1057 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1058 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1056 : tensor<2x32x40x256xf64>) outs(%1057 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1059 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1058 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_705 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1060 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1056, %1059 : tensor<2x32x40x256xf64>, tensor<2x32x1x1xf64>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%1061 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1060 : tensor<2x32x40x256xf64>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%1062 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1063 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1061 : tensor<2x32x40x256xf64>) outs(%1062 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1064 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1063 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_705 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1065 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1064 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1066 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%1067 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1054 : tensor<2x32x40x256xf32>) outs(%1066 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1068 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1067 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_706 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1069 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1065, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%1070 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1069 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1071 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_936, %1068 : tensor<2x32x40x256xf16>, tensor<2x32x1x1xf32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x40x256xf32>
%1072 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1071, %1070 : tensor<2x32x40x256xf32>, tensor<2x32x1x1xf32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x256xf32>
%collapsed_937 = tensor.collapse_shape %1072 [[0], [1, 2], [3]] : tensor<2x32x40x256xf32> into tensor<2x1280x256xf32>
%expanded_938 = tensor.expand_shape %collapsed_937 [[0], [1], [2, 3]] : tensor<2x1280x256xf32> into tensor<2x1280x16x16xf32>
%expanded_939 = tensor.expand_shape %cst_170 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%1073 = tensor.empty() : tensor<2x1280x16x16xf32>
%1074 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_938, %expanded_939 : tensor<2x1280x16x16xf32>, tensor<1280x1x1xf16>) outs(%1073 : tensor<2x1280x16x16xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x16x16xf32>
%expanded_940 = tensor.expand_shape %cst_171 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%1075 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1074, %expanded_940 : tensor<2x1280x16x16xf32>, tensor<1280x1x1xf16>) outs(%1073 : tensor<2x1280x16x16xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x16x16xf32>
%1076 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1077 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1076 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%1078 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1077 : tensor<f16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%1079 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1075 : tensor<2x1280x16x16xf32>) outs(%1078 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x1280x16x16xf16>
%1080 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1079 : tensor<2x1280x16x16xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280x16x16xf16>
%1081 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1080, %1079 : tensor<2x1280x16x16xf16>, tensor<2x1280x16x16xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x16x16xf16>
%padded_941 = tensor.pad %1081 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x1280x16x16xf16> to tensor<2x1280x18x18xf16>
%1082 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_173 : tensor<1280xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%1083 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_941, %cst_172 : tensor<2x1280x18x18xf16>, tensor<1280x1280x3x3xf16>) outs(%1082 : tensor<2x1280x16x16xf16>) -> tensor<2x1280x16x16xf16>
%1084 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_175 : tensor<1280xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%1085 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%1007, %cst_174 : tensor<2x640x16x16xf16>, tensor<1280x640x1x1xf16>) outs(%1084 : tensor<2x1280x16x16xf16>) -> tensor<2x1280x16x16xf16>
%1086 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1085, %1083 : tensor<2x1280x16x16xf16>, tensor<2x1280x16x16xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x16x16xf16>
%1087 = linalg.generic {indexing_maps = [#map11, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1086, %cst_3 : tensor<2x1280x16x16xf16>, tensor<f64>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.divf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x1280x16x16xf16>
%collapsed_942 = tensor.collapse_shape %1087 [[0], [1], [2, 3]] : tensor<2x1280x16x16xf16> into tensor<2x1280x256xf16>
%expanded_943 = tensor.expand_shape %collapsed_942 [[0], [1, 2], [3]] : tensor<2x1280x256xf16> into tensor<2x32x40x256xf16>
%1088 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1089 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1088 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%1090 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1089 : tensor<f32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x40x256xf32>
%1091 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_943 : tensor<2x32x40x256xf16>) outs(%1090 : tensor<2x32x40x256xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x256xf32>
%1092 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1091 : tensor<2x32x40x256xf32>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%1093 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1094 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1092 : tensor<2x32x40x256xf64>) outs(%1093 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1095 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1094 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_705 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1096 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1092, %1095 : tensor<2x32x40x256xf64>, tensor<2x32x1x1xf64>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%1097 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1096 : tensor<2x32x40x256xf64>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%1098 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1099 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1097 : tensor<2x32x40x256xf64>) outs(%1098 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1100 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1099 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_705 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1101 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1100 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1102 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%1103 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1091 : tensor<2x32x40x256xf32>) outs(%1102 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1104 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1103 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_706 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1105 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1101, %cst_2 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%1106 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1105 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1107 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_943, %1104 : tensor<2x32x40x256xf16>, tensor<2x32x1x1xf32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x40x256xf32>
%1108 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1107, %1106 : tensor<2x32x40x256xf32>, tensor<2x32x1x1xf32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x256xf32>
%collapsed_944 = tensor.collapse_shape %1108 [[0], [1, 2], [3]] : tensor<2x32x40x256xf32> into tensor<2x1280x256xf32>
%expanded_945 = tensor.expand_shape %collapsed_944 [[0], [1], [2, 3]] : tensor<2x1280x256xf32> into tensor<2x1280x16x16xf32>
%expanded_946 = tensor.expand_shape %cst_176 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%1109 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_945, %expanded_946 : tensor<2x1280x16x16xf32>, tensor<1280x1x1xf16>) outs(%1073 : tensor<2x1280x16x16xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x16x16xf32>
%expanded_947 = tensor.expand_shape %cst_177 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%1110 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1109, %expanded_947 : tensor<2x1280x16x16xf32>, tensor<1280x1x1xf16>) outs(%1073 : tensor<2x1280x16x16xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x16x16xf32>
%1111 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1112 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1111 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%1113 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1112 : tensor<f16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%1114 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1110 : tensor<2x1280x16x16xf32>) outs(%1113 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x1280x16x16xf16>
%1115 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_179 : tensor<1280xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%1116 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%1114, %cst_178 : tensor<2x1280x16x16xf16>, tensor<1280x1280x1x1xf16>) outs(%1115 : tensor<2x1280x16x16xf16>) -> tensor<2x1280x16x16xf16>
%1117 = tensor.empty() : tensor<2x16x16x1280xf16>
%1118 = linalg.generic {indexing_maps = [#map11, #map15], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1116 : tensor<2x1280x16x16xf16>) outs(%1117 : tensor<2x16x16x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x16x16x1280xf16>
%collapsed_948 = tensor.collapse_shape %1118 [[0], [1, 2], [3]] : tensor<2x16x16x1280xf16> into tensor<2x256x1280xf16>
%1119 = tensor.empty() : tensor<2x256x1xf16>
%1120 = linalg.fill ins(%cst_694 : f16) outs(%1119 : tensor<2x256x1xf16>) -> tensor<2x256x1xf16>
%1121 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%collapsed_948 : tensor<2x256x1280xf16>) outs(%1120 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%1122 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1121 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%1123 = tensor.empty() : tensor<2x256x1280xf16>
%1124 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1122 : tensor<2x256x1xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x1280xf16>
%1125 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%collapsed_948, %1124 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1126 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1125 : tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.mulf %in, %in : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1127 = linalg.fill ins(%cst_694 : f16) outs(%1119 : tensor<2x256x1xf16>) -> tensor<2x256x1xf16>
%1128 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%1126 : tensor<2x256x1280xf16>) outs(%1127 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%1129 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1128 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%1130 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1129 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.truncf %cst_700 : f64 to f16
%4281 = arith.addf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x256x1xf16>
%1131 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1130 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.rsqrt %in : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%1132 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1131 : tensor<2x256x1xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x1280xf16>
%1133 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1125, %1132 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1134 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1133, %cst_180 : tensor<2x256x1280xf16>, tensor<1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1135 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1134, %cst_181 : tensor<2x256x1280xf16>, tensor<1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1136 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_182 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%collapsed_949 = tensor.collapse_shape %1135 [[0, 1], [2]] : tensor<2x256x1280xf16> into tensor<512x1280xf16>
%1137 = tensor.empty() : tensor<512x1280xf16>
%1138 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%1139 = linalg.matmul ins(%collapsed_949, %1136 : tensor<512x1280xf16>, tensor<1280x1280xf16>) outs(%1138 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%1140 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_183 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%1141 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%1142 = linalg.matmul ins(%collapsed_949, %1140 : tensor<512x1280xf16>, tensor<1280x1280xf16>) outs(%1141 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%1143 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_184 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%1144 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%1145 = linalg.matmul ins(%collapsed_949, %1143 : tensor<512x1280xf16>, tensor<1280x1280xf16>) outs(%1144 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%expanded_950 = tensor.expand_shape %1139 [[0, 1], [2, 3]] : tensor<512x1280xf16> into tensor<2x256x8x160xf16>
%1146 = tensor.empty() : tensor<2x8x256x160xf16>
%1147 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_950 : tensor<2x256x8x160xf16>) outs(%1146 : tensor<2x8x256x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x256x160xf16>
%collapsed_951 = tensor.collapse_shape %1147 [[0, 1], [2], [3]] : tensor<2x8x256x160xf16> into tensor<16x256x160xf16>
%expanded_952 = tensor.expand_shape %1142 [[0, 1], [2, 3]] : tensor<512x1280xf16> into tensor<2x256x8x160xf16>
%1148 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_952 : tensor<2x256x8x160xf16>) outs(%1146 : tensor<2x8x256x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x256x160xf16>
%collapsed_953 = tensor.collapse_shape %1148 [[0, 1], [2], [3]] : tensor<2x8x256x160xf16> into tensor<16x256x160xf16>
%expanded_954 = tensor.expand_shape %1145 [[0, 1], [2, 3]] : tensor<512x1280xf16> into tensor<2x256x8x160xf16>
%1149 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_954 : tensor<2x256x8x160xf16>) outs(%1146 : tensor<2x8x256x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x256x160xf16>
%collapsed_955 = tensor.collapse_shape %1149 [[0, 1], [2], [3]] : tensor<2x8x256x160xf16> into tensor<16x256x160xf16>
%1150 = tensor.empty() : tensor<16x160x256xf16>
%1151 = linalg.generic {indexing_maps = [#map16, #map20], iterator_types = ["parallel", "parallel", "parallel"]} ins(%collapsed_953 : tensor<16x256x160xf16>) outs(%1150 : tensor<16x160x256xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<16x160x256xf16>
%1152 = tensor.empty() : tensor<16x256x256xf16>
%1153 = linalg.fill ins(%cst_694 : f16) outs(%1152 : tensor<16x256x256xf16>) -> tensor<16x256x256xf16>
%1154 = linalg.batch_matmul ins(%collapsed_951, %1151 : tensor<16x256x160xf16>, tensor<16x160x256xf16>) outs(%1153 : tensor<16x256x256xf16>) -> tensor<16x256x256xf16>
%1155 = linalg.generic {indexing_maps = [#map16, #map21, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1154, %cst : tensor<16x256x256xf16>, tensor<f64>) outs(%1152 : tensor<16x256x256xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.mulf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<16x256x256xf16>
%1156 = tensor.empty() : tensor<16x256x1xi64>
%1157 = linalg.fill ins(%c0_i64 : i64) outs(%1156 : tensor<16x256x1xi64>) -> tensor<16x256x1xi64>
%1158 = tensor.empty() : tensor<16x256x1xf16>
%1159 = linalg.fill ins(%cst_696 : f16) outs(%1158 : tensor<16x256x1xf16>) -> tensor<16x256x1xf16>
%1160:2 = linalg.generic {indexing_maps = [#map16, #map17, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%1155 : tensor<16x256x256xf16>) outs(%1159, %1157 : tensor<16x256x1xf16>, tensor<16x256x1xi64>) {
^bb0(%in: f16, %out: f16, %out_1640: i64):
%4280 = linalg.index 2 : index
%4281 = arith.index_cast %4280 : index to i64
%4282 = arith.maxf %in, %out : f16
%4283 = arith.cmpf ogt, %in, %out : f16
%4284 = arith.select %4283, %4281, %out_1640 : i64
linalg.yield %4282, %4284 : f16, i64
} -> (tensor<16x256x1xf16>, tensor<16x256x1xi64>)
%1161 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1155, %1160#0 : tensor<16x256x256xf16>, tensor<16x256x1xf16>) outs(%1152 : tensor<16x256x256xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x256x256xf16>
%1162 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1161 : tensor<16x256x256xf16>) outs(%1152 : tensor<16x256x256xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.exp %in : f16
linalg.yield %4280 : f16
} -> tensor<16x256x256xf16>
%1163 = linalg.fill ins(%cst_694 : f16) outs(%1158 : tensor<16x256x1xf16>) -> tensor<16x256x1xf16>
%1164 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%1162 : tensor<16x256x256xf16>) outs(%1163 : tensor<16x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<16x256x1xf16>
%1165 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1162, %1164 : tensor<16x256x256xf16>, tensor<16x256x1xf16>) outs(%1152 : tensor<16x256x256xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.divf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x256x256xf16>
%1166 = tensor.empty() : tensor<16x256x160xf16>
%1167 = linalg.fill ins(%cst_694 : f16) outs(%1166 : tensor<16x256x160xf16>) -> tensor<16x256x160xf16>
%1168 = linalg.batch_matmul ins(%1165, %collapsed_955 : tensor<16x256x256xf16>, tensor<16x256x160xf16>) outs(%1167 : tensor<16x256x160xf16>) -> tensor<16x256x160xf16>
%expanded_956 = tensor.expand_shape %1168 [[0, 1], [2], [3]] : tensor<16x256x160xf16> into tensor<2x8x256x160xf16>
%1169 = tensor.empty() : tensor<2x256x8x160xf16>
%1170 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_956 : tensor<2x8x256x160xf16>) outs(%1169 : tensor<2x256x8x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x8x160xf16>
%1171 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_185 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%collapsed_957 = tensor.collapse_shape %1170 [[0, 1], [2, 3]] : tensor<2x256x8x160xf16> into tensor<512x1280xf16>
%1172 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%1173 = linalg.matmul ins(%collapsed_957, %1171 : tensor<512x1280xf16>, tensor<1280x1280xf16>) outs(%1172 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%1174 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_186, %1173 : tensor<1280xf16>, tensor<512x1280xf16>) outs(%1137 : tensor<512x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<512x1280xf16>
%expanded_958 = tensor.expand_shape %1174 [[0, 1], [2]] : tensor<512x1280xf16> into tensor<2x256x1280xf16>
%1175 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%expanded_958, %collapsed_948 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1176 = linalg.fill ins(%cst_694 : f16) outs(%1119 : tensor<2x256x1xf16>) -> tensor<2x256x1xf16>
%1177 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%1175 : tensor<2x256x1280xf16>) outs(%1176 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%1178 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1177 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%1179 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1178 : tensor<2x256x1xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x1280xf16>
%1180 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1175, %1179 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1181 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1180 : tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.mulf %in, %in : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1182 = linalg.fill ins(%cst_694 : f16) outs(%1119 : tensor<2x256x1xf16>) -> tensor<2x256x1xf16>
%1183 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%1181 : tensor<2x256x1280xf16>) outs(%1182 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%1184 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1183 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%1185 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1184 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.truncf %cst_700 : f64 to f16
%4281 = arith.addf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x256x1xf16>
%1186 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1185 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.rsqrt %in : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%1187 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1186 : tensor<2x256x1xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x1280xf16>
%1188 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1180, %1187 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1189 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1188, %cst_187 : tensor<2x256x1280xf16>, tensor<1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1190 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1189, %cst_188 : tensor<2x256x1280xf16>, tensor<1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1191 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_189 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%collapsed_959 = tensor.collapse_shape %1190 [[0, 1], [2]] : tensor<2x256x1280xf16> into tensor<512x1280xf16>
%1192 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%1193 = linalg.matmul ins(%collapsed_959, %1191 : tensor<512x1280xf16>, tensor<1280x1280xf16>) outs(%1192 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%1194 = tensor.empty() : tensor<768x1280xf16>
%1195 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_190 : tensor<1280x768xf16>) outs(%1194 : tensor<768x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<768x1280xf16>
%1196 = tensor.empty() : tensor<154x1280xf16>
%1197 = linalg.fill ins(%cst_694 : f16) outs(%1196 : tensor<154x1280xf16>) -> tensor<154x1280xf16>
%1198 = linalg.matmul ins(%collapsed_761, %1195 : tensor<154x768xf16>, tensor<768x1280xf16>) outs(%1197 : tensor<154x1280xf16>) -> tensor<154x1280xf16>
%1199 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_191 : tensor<1280x768xf16>) outs(%1194 : tensor<768x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<768x1280xf16>
%1200 = linalg.fill ins(%cst_694 : f16) outs(%1196 : tensor<154x1280xf16>) -> tensor<154x1280xf16>
%1201 = linalg.matmul ins(%collapsed_761, %1199 : tensor<154x768xf16>, tensor<768x1280xf16>) outs(%1200 : tensor<154x1280xf16>) -> tensor<154x1280xf16>
%expanded_960 = tensor.expand_shape %1193 [[0, 1], [2, 3]] : tensor<512x1280xf16> into tensor<2x256x8x160xf16>
%1202 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_960 : tensor<2x256x8x160xf16>) outs(%1146 : tensor<2x8x256x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x256x160xf16>
%collapsed_961 = tensor.collapse_shape %1202 [[0, 1], [2], [3]] : tensor<2x8x256x160xf16> into tensor<16x256x160xf16>
%expanded_962 = tensor.expand_shape %1198 [[0, 1], [2, 3]] : tensor<154x1280xf16> into tensor<2x77x8x160xf16>
%1203 = tensor.empty() : tensor<2x8x77x160xf16>
%1204 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_962 : tensor<2x77x8x160xf16>) outs(%1203 : tensor<2x8x77x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x77x160xf16>
%collapsed_963 = tensor.collapse_shape %1204 [[0, 1], [2], [3]] : tensor<2x8x77x160xf16> into tensor<16x77x160xf16>
%expanded_964 = tensor.expand_shape %1201 [[0, 1], [2, 3]] : tensor<154x1280xf16> into tensor<2x77x8x160xf16>
%1205 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_964 : tensor<2x77x8x160xf16>) outs(%1203 : tensor<2x8x77x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x77x160xf16>
%collapsed_965 = tensor.collapse_shape %1205 [[0, 1], [2], [3]] : tensor<2x8x77x160xf16> into tensor<16x77x160xf16>
%1206 = tensor.empty() : tensor<16x160x77xf16>
%1207 = linalg.generic {indexing_maps = [#map16, #map20], iterator_types = ["parallel", "parallel", "parallel"]} ins(%collapsed_963 : tensor<16x77x160xf16>) outs(%1206 : tensor<16x160x77xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<16x160x77xf16>
%1208 = tensor.empty() : tensor<16x256x77xf16>
%1209 = linalg.fill ins(%cst_694 : f16) outs(%1208 : tensor<16x256x77xf16>) -> tensor<16x256x77xf16>
%1210 = linalg.batch_matmul ins(%collapsed_961, %1207 : tensor<16x256x160xf16>, tensor<16x160x77xf16>) outs(%1209 : tensor<16x256x77xf16>) -> tensor<16x256x77xf16>
%1211 = linalg.generic {indexing_maps = [#map16, #map21, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1210, %cst : tensor<16x256x77xf16>, tensor<f64>) outs(%1208 : tensor<16x256x77xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.mulf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<16x256x77xf16>
%1212 = linalg.fill ins(%c0_i64 : i64) outs(%1156 : tensor<16x256x1xi64>) -> tensor<16x256x1xi64>
%1213 = linalg.fill ins(%cst_696 : f16) outs(%1158 : tensor<16x256x1xf16>) -> tensor<16x256x1xf16>
%1214:2 = linalg.generic {indexing_maps = [#map16, #map17, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%1211 : tensor<16x256x77xf16>) outs(%1213, %1212 : tensor<16x256x1xf16>, tensor<16x256x1xi64>) {
^bb0(%in: f16, %out: f16, %out_1640: i64):
%4280 = linalg.index 2 : index
%4281 = arith.index_cast %4280 : index to i64
%4282 = arith.maxf %in, %out : f16
%4283 = arith.cmpf ogt, %in, %out : f16
%4284 = arith.select %4283, %4281, %out_1640 : i64
linalg.yield %4282, %4284 : f16, i64
} -> (tensor<16x256x1xf16>, tensor<16x256x1xi64>)
%1215 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1211, %1214#0 : tensor<16x256x77xf16>, tensor<16x256x1xf16>) outs(%1208 : tensor<16x256x77xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x256x77xf16>
%1216 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1215 : tensor<16x256x77xf16>) outs(%1208 : tensor<16x256x77xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.exp %in : f16
linalg.yield %4280 : f16
} -> tensor<16x256x77xf16>
%1217 = linalg.fill ins(%cst_694 : f16) outs(%1158 : tensor<16x256x1xf16>) -> tensor<16x256x1xf16>
%1218 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%1216 : tensor<16x256x77xf16>) outs(%1217 : tensor<16x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<16x256x1xf16>
%1219 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1216, %1218 : tensor<16x256x77xf16>, tensor<16x256x1xf16>) outs(%1208 : tensor<16x256x77xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.divf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x256x77xf16>
%1220 = linalg.fill ins(%cst_694 : f16) outs(%1166 : tensor<16x256x160xf16>) -> tensor<16x256x160xf16>
%1221 = linalg.batch_matmul ins(%1219, %collapsed_965 : tensor<16x256x77xf16>, tensor<16x77x160xf16>) outs(%1220 : tensor<16x256x160xf16>) -> tensor<16x256x160xf16>
%expanded_966 = tensor.expand_shape %1221 [[0, 1], [2], [3]] : tensor<16x256x160xf16> into tensor<2x8x256x160xf16>
%1222 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_966 : tensor<2x8x256x160xf16>) outs(%1169 : tensor<2x256x8x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x8x160xf16>
%1223 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_192 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%collapsed_967 = tensor.collapse_shape %1222 [[0, 1], [2, 3]] : tensor<2x256x8x160xf16> into tensor<512x1280xf16>
%1224 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%1225 = linalg.matmul ins(%collapsed_967, %1223 : tensor<512x1280xf16>, tensor<1280x1280xf16>) outs(%1224 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%1226 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_193, %1225 : tensor<1280xf16>, tensor<512x1280xf16>) outs(%1137 : tensor<512x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<512x1280xf16>
%expanded_968 = tensor.expand_shape %1226 [[0, 1], [2]] : tensor<512x1280xf16> into tensor<2x256x1280xf16>
%1227 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%expanded_968, %1175 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1228 = linalg.fill ins(%cst_694 : f16) outs(%1119 : tensor<2x256x1xf16>) -> tensor<2x256x1xf16>
%1229 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%1227 : tensor<2x256x1280xf16>) outs(%1228 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%1230 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1229 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%1231 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1230 : tensor<2x256x1xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x1280xf16>
%1232 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1227, %1231 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1233 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1232 : tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.mulf %in, %in : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1234 = linalg.fill ins(%cst_694 : f16) outs(%1119 : tensor<2x256x1xf16>) -> tensor<2x256x1xf16>
%1235 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%1233 : tensor<2x256x1280xf16>) outs(%1234 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%1236 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1235 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%1237 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1236 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.truncf %cst_700 : f64 to f16
%4281 = arith.addf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x256x1xf16>
%1238 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1237 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.rsqrt %in : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%1239 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1238 : tensor<2x256x1xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x1280xf16>
%1240 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1232, %1239 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1241 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1240, %cst_194 : tensor<2x256x1280xf16>, tensor<1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1242 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1241, %cst_195 : tensor<2x256x1280xf16>, tensor<1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1243 = tensor.empty() : tensor<1280x10240xf16>
%1244 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_196 : tensor<10240x1280xf16>) outs(%1243 : tensor<1280x10240xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x10240xf16>
%collapsed_969 = tensor.collapse_shape %1242 [[0, 1], [2]] : tensor<2x256x1280xf16> into tensor<512x1280xf16>
%1245 = tensor.empty() : tensor<512x10240xf16>
%1246 = linalg.fill ins(%cst_694 : f16) outs(%1245 : tensor<512x10240xf16>) -> tensor<512x10240xf16>
%1247 = linalg.matmul ins(%collapsed_969, %1244 : tensor<512x1280xf16>, tensor<1280x10240xf16>) outs(%1246 : tensor<512x10240xf16>) -> tensor<512x10240xf16>
%1248 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_197, %1247 : tensor<10240xf16>, tensor<512x10240xf16>) outs(%1245 : tensor<512x10240xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<512x10240xf16>
%expanded_970 = tensor.expand_shape %1248 [[0, 1], [2]] : tensor<512x10240xf16> into tensor<2x256x10240xf16>
%extracted_slice_971 = tensor.extract_slice %expanded_970[0, 0, 0] [2, 256, 5120] [1, 1, 1] : tensor<2x256x10240xf16> to tensor<2x256x5120xf16>
%extracted_slice_972 = tensor.extract_slice %expanded_970[0, 0, 5120] [2, 256, 5120] [1, 1, 1] : tensor<2x256x10240xf16> to tensor<2x256x5120xf16>
%1249 = tensor.empty() : tensor<2x256x5120xf16>
%1250 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%extracted_slice_972 : tensor<2x256x5120xf16>) outs(%1249 : tensor<2x256x5120xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.sqrt %cst_697 : f16
%4281 = arith.divf %in, %4280 : f16
%4282 = math.erf %4281 : f16
%4283 = arith.addf %4282, %cst_695 : f16
%4284 = arith.mulf %4283, %cst_698 : f16
%4285 = arith.mulf %in, %4284 : f16
linalg.yield %4285 : f16
} -> tensor<2x256x5120xf16>
%1251 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%extracted_slice_971, %1250 : tensor<2x256x5120xf16>, tensor<2x256x5120xf16>) outs(%1249 : tensor<2x256x5120xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x5120xf16>
%1252 = tensor.empty() : tensor<5120x1280xf16>
%1253 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_198 : tensor<1280x5120xf16>) outs(%1252 : tensor<5120x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<5120x1280xf16>
%collapsed_973 = tensor.collapse_shape %1251 [[0, 1], [2]] : tensor<2x256x5120xf16> into tensor<512x5120xf16>
%1254 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%1255 = linalg.matmul ins(%collapsed_973, %1253 : tensor<512x5120xf16>, tensor<5120x1280xf16>) outs(%1254 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%1256 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_199, %1255 : tensor<1280xf16>, tensor<512x1280xf16>) outs(%1137 : tensor<512x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<512x1280xf16>
%expanded_974 = tensor.expand_shape %1256 [[0, 1], [2]] : tensor<512x1280xf16> into tensor<2x256x1280xf16>
%1257 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%expanded_974, %1227 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%expanded_975 = tensor.expand_shape %1257 [[0], [1, 2], [3]] : tensor<2x256x1280xf16> into tensor<2x16x16x1280xf16>
%1258 = linalg.generic {indexing_maps = [#map11, #map22], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_975 : tensor<2x16x16x1280xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%1259 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_201 : tensor<1280xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%1260 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%1258, %cst_200 : tensor<2x1280x16x16xf16>, tensor<1280x1280x1x1xf16>) outs(%1259 : tensor<2x1280x16x16xf16>) -> tensor<2x1280x16x16xf16>
%1261 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1260, %1087 : tensor<2x1280x16x16xf16>, tensor<2x1280x16x16xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x16x16xf16>
%collapsed_976 = tensor.collapse_shape %1261 [[0], [1], [2, 3]] : tensor<2x1280x16x16xf16> into tensor<2x1280x256xf16>
%expanded_977 = tensor.expand_shape %collapsed_976 [[0], [1, 2], [3]] : tensor<2x1280x256xf16> into tensor<2x32x40x256xf16>
%1262 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1263 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1262 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%1264 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1263 : tensor<f32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x40x256xf32>
%1265 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_977 : tensor<2x32x40x256xf16>) outs(%1264 : tensor<2x32x40x256xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x256xf32>
%1266 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1265 : tensor<2x32x40x256xf32>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%1267 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1268 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1266 : tensor<2x32x40x256xf64>) outs(%1267 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1269 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1268 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_705 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1270 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1266, %1269 : tensor<2x32x40x256xf64>, tensor<2x32x1x1xf64>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%1271 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1270 : tensor<2x32x40x256xf64>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%1272 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1273 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1271 : tensor<2x32x40x256xf64>) outs(%1272 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1274 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1273 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_705 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1275 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1274 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1276 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%1277 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1265 : tensor<2x32x40x256xf32>) outs(%1276 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1278 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1277 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_706 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1279 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1275, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%1280 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1279 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1281 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_977, %1278 : tensor<2x32x40x256xf16>, tensor<2x32x1x1xf32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x40x256xf32>
%1282 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1281, %1280 : tensor<2x32x40x256xf32>, tensor<2x32x1x1xf32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x256xf32>
%collapsed_978 = tensor.collapse_shape %1282 [[0], [1, 2], [3]] : tensor<2x32x40x256xf32> into tensor<2x1280x256xf32>
%expanded_979 = tensor.expand_shape %collapsed_978 [[0], [1], [2, 3]] : tensor<2x1280x256xf32> into tensor<2x1280x16x16xf32>
%expanded_980 = tensor.expand_shape %cst_202 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%1283 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_979, %expanded_980 : tensor<2x1280x16x16xf32>, tensor<1280x1x1xf16>) outs(%1073 : tensor<2x1280x16x16xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x16x16xf32>
%expanded_981 = tensor.expand_shape %cst_203 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%1284 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1283, %expanded_981 : tensor<2x1280x16x16xf32>, tensor<1280x1x1xf16>) outs(%1073 : tensor<2x1280x16x16xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x16x16xf32>
%1285 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1286 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1285 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%1287 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1286 : tensor<f16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%1288 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1284 : tensor<2x1280x16x16xf32>) outs(%1287 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x1280x16x16xf16>
%1289 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1288 : tensor<2x1280x16x16xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280x16x16xf16>
%1290 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1289, %1288 : tensor<2x1280x16x16xf16>, tensor<2x1280x16x16xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x16x16xf16>
%padded_982 = tensor.pad %1290 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x1280x16x16xf16> to tensor<2x1280x18x18xf16>
%1291 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_205 : tensor<1280xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%1292 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_982, %cst_204 : tensor<2x1280x18x18xf16>, tensor<1280x1280x3x3xf16>) outs(%1291 : tensor<2x1280x16x16xf16>) -> tensor<2x1280x16x16xf16>
%1293 = linalg.generic {indexing_maps = [#map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%40 : tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280xf16>
%1294 = linalg.generic {indexing_maps = [#map5, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%1293, %40 : tensor<2x1280xf16>, tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280xf16>
%1295 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_206 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%1296 = linalg.fill ins(%cst_694 : f16) outs(%30 : tensor<2x1280xf16>) -> tensor<2x1280xf16>
%1297 = linalg.matmul ins(%1294, %1295 : tensor<2x1280xf16>, tensor<1280x1280xf16>) outs(%1296 : tensor<2x1280xf16>) -> tensor<2x1280xf16>
%1298 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_207, %1297 : tensor<1280xf16>, tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280xf16>
%expanded_983 = tensor.expand_shape %1298 [[0], [1, 2, 3]] : tensor<2x1280xf16> into tensor<2x1280x1x1xf16>
%1299 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1292, %expanded_983 : tensor<2x1280x16x16xf16>, tensor<2x1280x1x1xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x16x16xf16>
%collapsed_984 = tensor.collapse_shape %1299 [[0], [1], [2, 3]] : tensor<2x1280x16x16xf16> into tensor<2x1280x256xf16>
%expanded_985 = tensor.expand_shape %collapsed_984 [[0], [1, 2], [3]] : tensor<2x1280x256xf16> into tensor<2x32x40x256xf16>
%1300 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1301 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1300 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%1302 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1301 : tensor<f32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x40x256xf32>
%1303 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_985 : tensor<2x32x40x256xf16>) outs(%1302 : tensor<2x32x40x256xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x256xf32>
%1304 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1303 : tensor<2x32x40x256xf32>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%1305 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1306 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1304 : tensor<2x32x40x256xf64>) outs(%1305 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1307 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1306 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_705 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1308 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1304, %1307 : tensor<2x32x40x256xf64>, tensor<2x32x1x1xf64>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%1309 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1308 : tensor<2x32x40x256xf64>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%1310 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1311 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1309 : tensor<2x32x40x256xf64>) outs(%1310 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1312 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1311 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_705 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1313 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1312 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1314 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%1315 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1303 : tensor<2x32x40x256xf32>) outs(%1314 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1316 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1315 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_706 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1317 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1313, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%1318 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1317 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1319 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_985, %1316 : tensor<2x32x40x256xf16>, tensor<2x32x1x1xf32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x40x256xf32>
%1320 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1319, %1318 : tensor<2x32x40x256xf32>, tensor<2x32x1x1xf32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x256xf32>
%collapsed_986 = tensor.collapse_shape %1320 [[0], [1, 2], [3]] : tensor<2x32x40x256xf32> into tensor<2x1280x256xf32>
%expanded_987 = tensor.expand_shape %collapsed_986 [[0], [1], [2, 3]] : tensor<2x1280x256xf32> into tensor<2x1280x16x16xf32>
%expanded_988 = tensor.expand_shape %cst_208 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%1321 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_987, %expanded_988 : tensor<2x1280x16x16xf32>, tensor<1280x1x1xf16>) outs(%1073 : tensor<2x1280x16x16xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x16x16xf32>
%expanded_989 = tensor.expand_shape %cst_209 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%1322 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1321, %expanded_989 : tensor<2x1280x16x16xf32>, tensor<1280x1x1xf16>) outs(%1073 : tensor<2x1280x16x16xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x16x16xf32>
%1323 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1324 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1323 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%1325 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1324 : tensor<f16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%1326 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1322 : tensor<2x1280x16x16xf32>) outs(%1325 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x1280x16x16xf16>
%1327 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1326 : tensor<2x1280x16x16xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280x16x16xf16>
%1328 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1327, %1326 : tensor<2x1280x16x16xf16>, tensor<2x1280x16x16xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x16x16xf16>
%padded_990 = tensor.pad %1328 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x1280x16x16xf16> to tensor<2x1280x18x18xf16>
%1329 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_211 : tensor<1280xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%1330 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_990, %cst_210 : tensor<2x1280x18x18xf16>, tensor<1280x1280x3x3xf16>) outs(%1329 : tensor<2x1280x16x16xf16>) -> tensor<2x1280x16x16xf16>
%1331 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1261, %1330 : tensor<2x1280x16x16xf16>, tensor<2x1280x16x16xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x16x16xf16>
%1332 = linalg.generic {indexing_maps = [#map11, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1331, %cst_3 : tensor<2x1280x16x16xf16>, tensor<f64>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.divf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x1280x16x16xf16>
%collapsed_991 = tensor.collapse_shape %1332 [[0], [1], [2, 3]] : tensor<2x1280x16x16xf16> into tensor<2x1280x256xf16>
%expanded_992 = tensor.expand_shape %collapsed_991 [[0], [1, 2], [3]] : tensor<2x1280x256xf16> into tensor<2x32x40x256xf16>
%1333 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1334 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1333 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%1335 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1334 : tensor<f32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x40x256xf32>
%1336 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_992 : tensor<2x32x40x256xf16>) outs(%1335 : tensor<2x32x40x256xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x256xf32>
%1337 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1336 : tensor<2x32x40x256xf32>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%1338 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1339 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1337 : tensor<2x32x40x256xf64>) outs(%1338 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1340 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1339 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_705 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1341 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1337, %1340 : tensor<2x32x40x256xf64>, tensor<2x32x1x1xf64>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%1342 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1341 : tensor<2x32x40x256xf64>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%1343 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1344 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1342 : tensor<2x32x40x256xf64>) outs(%1343 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1345 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1344 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_705 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1346 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1345 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1347 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%1348 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1336 : tensor<2x32x40x256xf32>) outs(%1347 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1349 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1348 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_706 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1350 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1346, %cst_2 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%1351 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1350 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1352 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_992, %1349 : tensor<2x32x40x256xf16>, tensor<2x32x1x1xf32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x40x256xf32>
%1353 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1352, %1351 : tensor<2x32x40x256xf32>, tensor<2x32x1x1xf32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x256xf32>
%collapsed_993 = tensor.collapse_shape %1353 [[0], [1, 2], [3]] : tensor<2x32x40x256xf32> into tensor<2x1280x256xf32>
%expanded_994 = tensor.expand_shape %collapsed_993 [[0], [1], [2, 3]] : tensor<2x1280x256xf32> into tensor<2x1280x16x16xf32>
%expanded_995 = tensor.expand_shape %cst_212 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%1354 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_994, %expanded_995 : tensor<2x1280x16x16xf32>, tensor<1280x1x1xf16>) outs(%1073 : tensor<2x1280x16x16xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x16x16xf32>
%expanded_996 = tensor.expand_shape %cst_213 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%1355 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1354, %expanded_996 : tensor<2x1280x16x16xf32>, tensor<1280x1x1xf16>) outs(%1073 : tensor<2x1280x16x16xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x16x16xf32>
%1356 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1357 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1356 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%1358 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1357 : tensor<f16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%1359 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1355 : tensor<2x1280x16x16xf32>) outs(%1358 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x1280x16x16xf16>
%1360 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_215 : tensor<1280xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%1361 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%1359, %cst_214 : tensor<2x1280x16x16xf16>, tensor<1280x1280x1x1xf16>) outs(%1360 : tensor<2x1280x16x16xf16>) -> tensor<2x1280x16x16xf16>
%1362 = linalg.generic {indexing_maps = [#map11, #map15], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1361 : tensor<2x1280x16x16xf16>) outs(%1117 : tensor<2x16x16x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x16x16x1280xf16>
%collapsed_997 = tensor.collapse_shape %1362 [[0], [1, 2], [3]] : tensor<2x16x16x1280xf16> into tensor<2x256x1280xf16>
%1363 = linalg.fill ins(%cst_694 : f16) outs(%1119 : tensor<2x256x1xf16>) -> tensor<2x256x1xf16>
%1364 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%collapsed_997 : tensor<2x256x1280xf16>) outs(%1363 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%1365 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1364 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%1366 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1365 : tensor<2x256x1xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x1280xf16>
%1367 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%collapsed_997, %1366 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1368 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1367 : tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.mulf %in, %in : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1369 = linalg.fill ins(%cst_694 : f16) outs(%1119 : tensor<2x256x1xf16>) -> tensor<2x256x1xf16>
%1370 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%1368 : tensor<2x256x1280xf16>) outs(%1369 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%1371 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1370 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%1372 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1371 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.truncf %cst_700 : f64 to f16
%4281 = arith.addf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x256x1xf16>
%1373 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1372 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.rsqrt %in : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%1374 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1373 : tensor<2x256x1xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x1280xf16>
%1375 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1367, %1374 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1376 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1375, %cst_216 : tensor<2x256x1280xf16>, tensor<1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1377 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1376, %cst_217 : tensor<2x256x1280xf16>, tensor<1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1378 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_218 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%collapsed_998 = tensor.collapse_shape %1377 [[0, 1], [2]] : tensor<2x256x1280xf16> into tensor<512x1280xf16>
%1379 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%1380 = linalg.matmul ins(%collapsed_998, %1378 : tensor<512x1280xf16>, tensor<1280x1280xf16>) outs(%1379 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%1381 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_219 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%1382 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%1383 = linalg.matmul ins(%collapsed_998, %1381 : tensor<512x1280xf16>, tensor<1280x1280xf16>) outs(%1382 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%1384 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_220 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%1385 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%1386 = linalg.matmul ins(%collapsed_998, %1384 : tensor<512x1280xf16>, tensor<1280x1280xf16>) outs(%1385 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%expanded_999 = tensor.expand_shape %1380 [[0, 1], [2, 3]] : tensor<512x1280xf16> into tensor<2x256x8x160xf16>
%1387 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_999 : tensor<2x256x8x160xf16>) outs(%1146 : tensor<2x8x256x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x256x160xf16>
%collapsed_1000 = tensor.collapse_shape %1387 [[0, 1], [2], [3]] : tensor<2x8x256x160xf16> into tensor<16x256x160xf16>
%expanded_1001 = tensor.expand_shape %1383 [[0, 1], [2, 3]] : tensor<512x1280xf16> into tensor<2x256x8x160xf16>
%1388 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1001 : tensor<2x256x8x160xf16>) outs(%1146 : tensor<2x8x256x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x256x160xf16>
%collapsed_1002 = tensor.collapse_shape %1388 [[0, 1], [2], [3]] : tensor<2x8x256x160xf16> into tensor<16x256x160xf16>
%expanded_1003 = tensor.expand_shape %1386 [[0, 1], [2, 3]] : tensor<512x1280xf16> into tensor<2x256x8x160xf16>
%1389 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1003 : tensor<2x256x8x160xf16>) outs(%1146 : tensor<2x8x256x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x256x160xf16>
%collapsed_1004 = tensor.collapse_shape %1389 [[0, 1], [2], [3]] : tensor<2x8x256x160xf16> into tensor<16x256x160xf16>
%1390 = linalg.generic {indexing_maps = [#map16, #map20], iterator_types = ["parallel", "parallel", "parallel"]} ins(%collapsed_1002 : tensor<16x256x160xf16>) outs(%1150 : tensor<16x160x256xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<16x160x256xf16>
%1391 = linalg.fill ins(%cst_694 : f16) outs(%1152 : tensor<16x256x256xf16>) -> tensor<16x256x256xf16>
%1392 = linalg.batch_matmul ins(%collapsed_1000, %1390 : tensor<16x256x160xf16>, tensor<16x160x256xf16>) outs(%1391 : tensor<16x256x256xf16>) -> tensor<16x256x256xf16>
%1393 = linalg.generic {indexing_maps = [#map16, #map21, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1392, %cst : tensor<16x256x256xf16>, tensor<f64>) outs(%1152 : tensor<16x256x256xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.mulf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<16x256x256xf16>
%1394 = linalg.fill ins(%c0_i64 : i64) outs(%1156 : tensor<16x256x1xi64>) -> tensor<16x256x1xi64>
%1395 = linalg.fill ins(%cst_696 : f16) outs(%1158 : tensor<16x256x1xf16>) -> tensor<16x256x1xf16>
%1396:2 = linalg.generic {indexing_maps = [#map16, #map17, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%1393 : tensor<16x256x256xf16>) outs(%1395, %1394 : tensor<16x256x1xf16>, tensor<16x256x1xi64>) {
^bb0(%in: f16, %out: f16, %out_1640: i64):
%4280 = linalg.index 2 : index
%4281 = arith.index_cast %4280 : index to i64
%4282 = arith.maxf %in, %out : f16
%4283 = arith.cmpf ogt, %in, %out : f16
%4284 = arith.select %4283, %4281, %out_1640 : i64
linalg.yield %4282, %4284 : f16, i64
} -> (tensor<16x256x1xf16>, tensor<16x256x1xi64>)
%1397 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1393, %1396#0 : tensor<16x256x256xf16>, tensor<16x256x1xf16>) outs(%1152 : tensor<16x256x256xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x256x256xf16>
%1398 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1397 : tensor<16x256x256xf16>) outs(%1152 : tensor<16x256x256xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.exp %in : f16
linalg.yield %4280 : f16
} -> tensor<16x256x256xf16>
%1399 = linalg.fill ins(%cst_694 : f16) outs(%1158 : tensor<16x256x1xf16>) -> tensor<16x256x1xf16>
%1400 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%1398 : tensor<16x256x256xf16>) outs(%1399 : tensor<16x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<16x256x1xf16>
%1401 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1398, %1400 : tensor<16x256x256xf16>, tensor<16x256x1xf16>) outs(%1152 : tensor<16x256x256xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.divf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x256x256xf16>
%1402 = linalg.fill ins(%cst_694 : f16) outs(%1166 : tensor<16x256x160xf16>) -> tensor<16x256x160xf16>
%1403 = linalg.batch_matmul ins(%1401, %collapsed_1004 : tensor<16x256x256xf16>, tensor<16x256x160xf16>) outs(%1402 : tensor<16x256x160xf16>) -> tensor<16x256x160xf16>
%expanded_1005 = tensor.expand_shape %1403 [[0, 1], [2], [3]] : tensor<16x256x160xf16> into tensor<2x8x256x160xf16>
%1404 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1005 : tensor<2x8x256x160xf16>) outs(%1169 : tensor<2x256x8x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x8x160xf16>
%1405 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_221 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%collapsed_1006 = tensor.collapse_shape %1404 [[0, 1], [2, 3]] : tensor<2x256x8x160xf16> into tensor<512x1280xf16>
%1406 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%1407 = linalg.matmul ins(%collapsed_1006, %1405 : tensor<512x1280xf16>, tensor<1280x1280xf16>) outs(%1406 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%1408 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_222, %1407 : tensor<1280xf16>, tensor<512x1280xf16>) outs(%1137 : tensor<512x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<512x1280xf16>
%expanded_1007 = tensor.expand_shape %1408 [[0, 1], [2]] : tensor<512x1280xf16> into tensor<2x256x1280xf16>
%1409 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%expanded_1007, %collapsed_997 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1410 = linalg.fill ins(%cst_694 : f16) outs(%1119 : tensor<2x256x1xf16>) -> tensor<2x256x1xf16>
%1411 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%1409 : tensor<2x256x1280xf16>) outs(%1410 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%1412 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1411 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%1413 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1412 : tensor<2x256x1xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x1280xf16>
%1414 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1409, %1413 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1415 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1414 : tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.mulf %in, %in : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1416 = linalg.fill ins(%cst_694 : f16) outs(%1119 : tensor<2x256x1xf16>) -> tensor<2x256x1xf16>
%1417 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%1415 : tensor<2x256x1280xf16>) outs(%1416 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%1418 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1417 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%1419 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1418 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.truncf %cst_700 : f64 to f16
%4281 = arith.addf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x256x1xf16>
%1420 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1419 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.rsqrt %in : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%1421 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1420 : tensor<2x256x1xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x1280xf16>
%1422 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1414, %1421 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1423 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1422, %cst_223 : tensor<2x256x1280xf16>, tensor<1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1424 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1423, %cst_224 : tensor<2x256x1280xf16>, tensor<1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1425 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_225 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%collapsed_1008 = tensor.collapse_shape %1424 [[0, 1], [2]] : tensor<2x256x1280xf16> into tensor<512x1280xf16>
%1426 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%1427 = linalg.matmul ins(%collapsed_1008, %1425 : tensor<512x1280xf16>, tensor<1280x1280xf16>) outs(%1426 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%1428 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_226 : tensor<1280x768xf16>) outs(%1194 : tensor<768x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<768x1280xf16>
%1429 = linalg.fill ins(%cst_694 : f16) outs(%1196 : tensor<154x1280xf16>) -> tensor<154x1280xf16>
%1430 = linalg.matmul ins(%collapsed_761, %1428 : tensor<154x768xf16>, tensor<768x1280xf16>) outs(%1429 : tensor<154x1280xf16>) -> tensor<154x1280xf16>
%1431 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_227 : tensor<1280x768xf16>) outs(%1194 : tensor<768x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<768x1280xf16>
%1432 = linalg.fill ins(%cst_694 : f16) outs(%1196 : tensor<154x1280xf16>) -> tensor<154x1280xf16>
%1433 = linalg.matmul ins(%collapsed_761, %1431 : tensor<154x768xf16>, tensor<768x1280xf16>) outs(%1432 : tensor<154x1280xf16>) -> tensor<154x1280xf16>
%expanded_1009 = tensor.expand_shape %1427 [[0, 1], [2, 3]] : tensor<512x1280xf16> into tensor<2x256x8x160xf16>
%1434 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1009 : tensor<2x256x8x160xf16>) outs(%1146 : tensor<2x8x256x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x256x160xf16>
%collapsed_1010 = tensor.collapse_shape %1434 [[0, 1], [2], [3]] : tensor<2x8x256x160xf16> into tensor<16x256x160xf16>
%expanded_1011 = tensor.expand_shape %1430 [[0, 1], [2, 3]] : tensor<154x1280xf16> into tensor<2x77x8x160xf16>
%1435 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1011 : tensor<2x77x8x160xf16>) outs(%1203 : tensor<2x8x77x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x77x160xf16>
%collapsed_1012 = tensor.collapse_shape %1435 [[0, 1], [2], [3]] : tensor<2x8x77x160xf16> into tensor<16x77x160xf16>
%expanded_1013 = tensor.expand_shape %1433 [[0, 1], [2, 3]] : tensor<154x1280xf16> into tensor<2x77x8x160xf16>
%1436 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1013 : tensor<2x77x8x160xf16>) outs(%1203 : tensor<2x8x77x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x77x160xf16>
%collapsed_1014 = tensor.collapse_shape %1436 [[0, 1], [2], [3]] : tensor<2x8x77x160xf16> into tensor<16x77x160xf16>
%1437 = linalg.generic {indexing_maps = [#map16, #map20], iterator_types = ["parallel", "parallel", "parallel"]} ins(%collapsed_1012 : tensor<16x77x160xf16>) outs(%1206 : tensor<16x160x77xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<16x160x77xf16>
%1438 = linalg.fill ins(%cst_694 : f16) outs(%1208 : tensor<16x256x77xf16>) -> tensor<16x256x77xf16>
%1439 = linalg.batch_matmul ins(%collapsed_1010, %1437 : tensor<16x256x160xf16>, tensor<16x160x77xf16>) outs(%1438 : tensor<16x256x77xf16>) -> tensor<16x256x77xf16>
%1440 = linalg.generic {indexing_maps = [#map16, #map21, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1439, %cst : tensor<16x256x77xf16>, tensor<f64>) outs(%1208 : tensor<16x256x77xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.mulf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<16x256x77xf16>
%1441 = linalg.fill ins(%c0_i64 : i64) outs(%1156 : tensor<16x256x1xi64>) -> tensor<16x256x1xi64>
%1442 = linalg.fill ins(%cst_696 : f16) outs(%1158 : tensor<16x256x1xf16>) -> tensor<16x256x1xf16>
%1443:2 = linalg.generic {indexing_maps = [#map16, #map17, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%1440 : tensor<16x256x77xf16>) outs(%1442, %1441 : tensor<16x256x1xf16>, tensor<16x256x1xi64>) {
^bb0(%in: f16, %out: f16, %out_1640: i64):
%4280 = linalg.index 2 : index
%4281 = arith.index_cast %4280 : index to i64
%4282 = arith.maxf %in, %out : f16
%4283 = arith.cmpf ogt, %in, %out : f16
%4284 = arith.select %4283, %4281, %out_1640 : i64
linalg.yield %4282, %4284 : f16, i64
} -> (tensor<16x256x1xf16>, tensor<16x256x1xi64>)
%1444 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1440, %1443#0 : tensor<16x256x77xf16>, tensor<16x256x1xf16>) outs(%1208 : tensor<16x256x77xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x256x77xf16>
%1445 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1444 : tensor<16x256x77xf16>) outs(%1208 : tensor<16x256x77xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.exp %in : f16
linalg.yield %4280 : f16
} -> tensor<16x256x77xf16>
%1446 = linalg.fill ins(%cst_694 : f16) outs(%1158 : tensor<16x256x1xf16>) -> tensor<16x256x1xf16>
%1447 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%1445 : tensor<16x256x77xf16>) outs(%1446 : tensor<16x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<16x256x1xf16>
%1448 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1445, %1447 : tensor<16x256x77xf16>, tensor<16x256x1xf16>) outs(%1208 : tensor<16x256x77xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.divf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x256x77xf16>
%1449 = linalg.fill ins(%cst_694 : f16) outs(%1166 : tensor<16x256x160xf16>) -> tensor<16x256x160xf16>
%1450 = linalg.batch_matmul ins(%1448, %collapsed_1014 : tensor<16x256x77xf16>, tensor<16x77x160xf16>) outs(%1449 : tensor<16x256x160xf16>) -> tensor<16x256x160xf16>
%expanded_1015 = tensor.expand_shape %1450 [[0, 1], [2], [3]] : tensor<16x256x160xf16> into tensor<2x8x256x160xf16>
%1451 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1015 : tensor<2x8x256x160xf16>) outs(%1169 : tensor<2x256x8x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x8x160xf16>
%1452 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_228 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%collapsed_1016 = tensor.collapse_shape %1451 [[0, 1], [2, 3]] : tensor<2x256x8x160xf16> into tensor<512x1280xf16>
%1453 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%1454 = linalg.matmul ins(%collapsed_1016, %1452 : tensor<512x1280xf16>, tensor<1280x1280xf16>) outs(%1453 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%1455 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_229, %1454 : tensor<1280xf16>, tensor<512x1280xf16>) outs(%1137 : tensor<512x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<512x1280xf16>
%expanded_1017 = tensor.expand_shape %1455 [[0, 1], [2]] : tensor<512x1280xf16> into tensor<2x256x1280xf16>
%1456 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%expanded_1017, %1409 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1457 = linalg.fill ins(%cst_694 : f16) outs(%1119 : tensor<2x256x1xf16>) -> tensor<2x256x1xf16>
%1458 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%1456 : tensor<2x256x1280xf16>) outs(%1457 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%1459 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1458 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%1460 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1459 : tensor<2x256x1xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x1280xf16>
%1461 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1456, %1460 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1462 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1461 : tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.mulf %in, %in : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1463 = linalg.fill ins(%cst_694 : f16) outs(%1119 : tensor<2x256x1xf16>) -> tensor<2x256x1xf16>
%1464 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%1462 : tensor<2x256x1280xf16>) outs(%1463 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%1465 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1464 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%1466 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1465 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.truncf %cst_700 : f64 to f16
%4281 = arith.addf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x256x1xf16>
%1467 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1466 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.rsqrt %in : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%1468 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1467 : tensor<2x256x1xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x1280xf16>
%1469 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1461, %1468 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1470 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1469, %cst_230 : tensor<2x256x1280xf16>, tensor<1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1471 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1470, %cst_231 : tensor<2x256x1280xf16>, tensor<1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%1472 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_232 : tensor<10240x1280xf16>) outs(%1243 : tensor<1280x10240xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x10240xf16>
%collapsed_1018 = tensor.collapse_shape %1471 [[0, 1], [2]] : tensor<2x256x1280xf16> into tensor<512x1280xf16>
%1473 = linalg.fill ins(%cst_694 : f16) outs(%1245 : tensor<512x10240xf16>) -> tensor<512x10240xf16>
%1474 = linalg.matmul ins(%collapsed_1018, %1472 : tensor<512x1280xf16>, tensor<1280x10240xf16>) outs(%1473 : tensor<512x10240xf16>) -> tensor<512x10240xf16>
%1475 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_233, %1474 : tensor<10240xf16>, tensor<512x10240xf16>) outs(%1245 : tensor<512x10240xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<512x10240xf16>
%expanded_1019 = tensor.expand_shape %1475 [[0, 1], [2]] : tensor<512x10240xf16> into tensor<2x256x10240xf16>
%extracted_slice_1020 = tensor.extract_slice %expanded_1019[0, 0, 0] [2, 256, 5120] [1, 1, 1] : tensor<2x256x10240xf16> to tensor<2x256x5120xf16>
%extracted_slice_1021 = tensor.extract_slice %expanded_1019[0, 0, 5120] [2, 256, 5120] [1, 1, 1] : tensor<2x256x10240xf16> to tensor<2x256x5120xf16>
%1476 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%extracted_slice_1021 : tensor<2x256x5120xf16>) outs(%1249 : tensor<2x256x5120xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.sqrt %cst_697 : f16
%4281 = arith.divf %in, %4280 : f16
%4282 = math.erf %4281 : f16
%4283 = arith.addf %4282, %cst_695 : f16
%4284 = arith.mulf %4283, %cst_698 : f16
%4285 = arith.mulf %in, %4284 : f16
linalg.yield %4285 : f16
} -> tensor<2x256x5120xf16>
%1477 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%extracted_slice_1020, %1476 : tensor<2x256x5120xf16>, tensor<2x256x5120xf16>) outs(%1249 : tensor<2x256x5120xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x5120xf16>
%1478 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_234 : tensor<1280x5120xf16>) outs(%1252 : tensor<5120x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<5120x1280xf16>
%collapsed_1022 = tensor.collapse_shape %1477 [[0, 1], [2]] : tensor<2x256x5120xf16> into tensor<512x5120xf16>
%1479 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%1480 = linalg.matmul ins(%collapsed_1022, %1478 : tensor<512x5120xf16>, tensor<5120x1280xf16>) outs(%1479 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%1481 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_235, %1480 : tensor<1280xf16>, tensor<512x1280xf16>) outs(%1137 : tensor<512x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<512x1280xf16>
%expanded_1023 = tensor.expand_shape %1481 [[0, 1], [2]] : tensor<512x1280xf16> into tensor<2x256x1280xf16>
%1482 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%expanded_1023, %1456 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%expanded_1024 = tensor.expand_shape %1482 [[0], [1, 2], [3]] : tensor<2x256x1280xf16> into tensor<2x16x16x1280xf16>
%1483 = linalg.generic {indexing_maps = [#map11, #map22], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1024 : tensor<2x16x16x1280xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%1484 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_237 : tensor<1280xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%1485 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%1483, %cst_236 : tensor<2x1280x16x16xf16>, tensor<1280x1280x1x1xf16>) outs(%1484 : tensor<2x1280x16x16xf16>) -> tensor<2x1280x16x16xf16>
%1486 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1485, %1332 : tensor<2x1280x16x16xf16>, tensor<2x1280x16x16xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x16x16xf16>
%padded_1025 = tensor.pad %1486 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x1280x16x16xf16> to tensor<2x1280x18x18xf16>
%1487 = tensor.empty() : tensor<2x1280x8x8xf16>
%1488 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_239 : tensor<1280xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%1489 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>} ins(%padded_1025, %cst_238 : tensor<2x1280x18x18xf16>, tensor<1280x1280x3x3xf16>) outs(%1488 : tensor<2x1280x8x8xf16>) -> tensor<2x1280x8x8xf16>
%collapsed_1026 = tensor.collapse_shape %1489 [[0], [1], [2, 3]] : tensor<2x1280x8x8xf16> into tensor<2x1280x64xf16>
%expanded_1027 = tensor.expand_shape %collapsed_1026 [[0], [1, 2], [3]] : tensor<2x1280x64xf16> into tensor<2x32x40x64xf16>
%1490 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1491 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1490 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%1492 = tensor.empty() : tensor<2x32x40x64xf32>
%1493 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1491 : tensor<f32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x40x64xf32>
%1494 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1027 : tensor<2x32x40x64xf16>) outs(%1493 : tensor<2x32x40x64xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x64xf32>
%1495 = tensor.empty() : tensor<2x32x40x64xf64>
%1496 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1494 : tensor<2x32x40x64xf32>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%1497 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1498 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1496 : tensor<2x32x40x64xf64>) outs(%1497 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1499 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1498 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_713 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1500 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1496, %1499 : tensor<2x32x40x64xf64>, tensor<2x32x1x1xf64>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%1501 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1500 : tensor<2x32x40x64xf64>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%1502 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1503 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1501 : tensor<2x32x40x64xf64>) outs(%1502 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1504 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1503 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_713 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1505 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1504 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1506 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%1507 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1494 : tensor<2x32x40x64xf32>) outs(%1506 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1508 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1507 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_714 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1509 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1505, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%1510 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1509 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1511 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1027, %1508 : tensor<2x32x40x64xf16>, tensor<2x32x1x1xf32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x40x64xf32>
%1512 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1511, %1510 : tensor<2x32x40x64xf32>, tensor<2x32x1x1xf32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x64xf32>
%collapsed_1028 = tensor.collapse_shape %1512 [[0], [1, 2], [3]] : tensor<2x32x40x64xf32> into tensor<2x1280x64xf32>
%expanded_1029 = tensor.expand_shape %collapsed_1028 [[0], [1], [2, 3]] : tensor<2x1280x64xf32> into tensor<2x1280x8x8xf32>
%expanded_1030 = tensor.expand_shape %cst_240 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%1513 = tensor.empty() : tensor<2x1280x8x8xf32>
%1514 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1029, %expanded_1030 : tensor<2x1280x8x8xf32>, tensor<1280x1x1xf16>) outs(%1513 : tensor<2x1280x8x8xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x8x8xf32>
%expanded_1031 = tensor.expand_shape %cst_241 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%1515 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1514, %expanded_1031 : tensor<2x1280x8x8xf32>, tensor<1280x1x1xf16>) outs(%1513 : tensor<2x1280x8x8xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x8x8xf32>
%1516 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1517 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1516 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%1518 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1517 : tensor<f16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%1519 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1515 : tensor<2x1280x8x8xf32>) outs(%1518 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%1520 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1519 : tensor<2x1280x8x8xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280x8x8xf16>
%1521 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1520, %1519 : tensor<2x1280x8x8xf16>, tensor<2x1280x8x8xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%padded_1032 = tensor.pad %1521 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x1280x8x8xf16> to tensor<2x1280x10x10xf16>
%1522 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_243 : tensor<1280xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%1523 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_1032, %cst_242 : tensor<2x1280x10x10xf16>, tensor<1280x1280x3x3xf16>) outs(%1522 : tensor<2x1280x8x8xf16>) -> tensor<2x1280x8x8xf16>
%1524 = linalg.generic {indexing_maps = [#map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%40 : tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280xf16>
%1525 = linalg.generic {indexing_maps = [#map5, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%1524, %40 : tensor<2x1280xf16>, tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280xf16>
%1526 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_244 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%1527 = linalg.fill ins(%cst_694 : f16) outs(%30 : tensor<2x1280xf16>) -> tensor<2x1280xf16>
%1528 = linalg.matmul ins(%1525, %1526 : tensor<2x1280xf16>, tensor<1280x1280xf16>) outs(%1527 : tensor<2x1280xf16>) -> tensor<2x1280xf16>
%1529 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_245, %1528 : tensor<1280xf16>, tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280xf16>
%expanded_1033 = tensor.expand_shape %1529 [[0], [1, 2, 3]] : tensor<2x1280xf16> into tensor<2x1280x1x1xf16>
%1530 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1523, %expanded_1033 : tensor<2x1280x8x8xf16>, tensor<2x1280x1x1xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%collapsed_1034 = tensor.collapse_shape %1530 [[0], [1], [2, 3]] : tensor<2x1280x8x8xf16> into tensor<2x1280x64xf16>
%expanded_1035 = tensor.expand_shape %collapsed_1034 [[0], [1, 2], [3]] : tensor<2x1280x64xf16> into tensor<2x32x40x64xf16>
%1531 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1532 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1531 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%1533 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1532 : tensor<f32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x40x64xf32>
%1534 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1035 : tensor<2x32x40x64xf16>) outs(%1533 : tensor<2x32x40x64xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x64xf32>
%1535 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1534 : tensor<2x32x40x64xf32>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%1536 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1537 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1535 : tensor<2x32x40x64xf64>) outs(%1536 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1538 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1537 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_713 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1539 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1535, %1538 : tensor<2x32x40x64xf64>, tensor<2x32x1x1xf64>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%1540 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1539 : tensor<2x32x40x64xf64>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%1541 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1542 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1540 : tensor<2x32x40x64xf64>) outs(%1541 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1543 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1542 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_713 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1544 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1543 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1545 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%1546 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1534 : tensor<2x32x40x64xf32>) outs(%1545 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1547 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1546 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_714 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1548 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1544, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%1549 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1548 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1550 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1035, %1547 : tensor<2x32x40x64xf16>, tensor<2x32x1x1xf32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x40x64xf32>
%1551 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1550, %1549 : tensor<2x32x40x64xf32>, tensor<2x32x1x1xf32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x64xf32>
%collapsed_1036 = tensor.collapse_shape %1551 [[0], [1, 2], [3]] : tensor<2x32x40x64xf32> into tensor<2x1280x64xf32>
%expanded_1037 = tensor.expand_shape %collapsed_1036 [[0], [1], [2, 3]] : tensor<2x1280x64xf32> into tensor<2x1280x8x8xf32>
%expanded_1038 = tensor.expand_shape %cst_246 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%1552 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1037, %expanded_1038 : tensor<2x1280x8x8xf32>, tensor<1280x1x1xf16>) outs(%1513 : tensor<2x1280x8x8xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x8x8xf32>
%expanded_1039 = tensor.expand_shape %cst_247 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%1553 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1552, %expanded_1039 : tensor<2x1280x8x8xf32>, tensor<1280x1x1xf16>) outs(%1513 : tensor<2x1280x8x8xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x8x8xf32>
%1554 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1555 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1554 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%1556 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1555 : tensor<f16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%1557 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1553 : tensor<2x1280x8x8xf32>) outs(%1556 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%1558 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1557 : tensor<2x1280x8x8xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280x8x8xf16>
%1559 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1558, %1557 : tensor<2x1280x8x8xf16>, tensor<2x1280x8x8xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%padded_1040 = tensor.pad %1559 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x1280x8x8xf16> to tensor<2x1280x10x10xf16>
%1560 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_249 : tensor<1280xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%1561 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_1040, %cst_248 : tensor<2x1280x10x10xf16>, tensor<1280x1280x3x3xf16>) outs(%1560 : tensor<2x1280x8x8xf16>) -> tensor<2x1280x8x8xf16>
%1562 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1489, %1561 : tensor<2x1280x8x8xf16>, tensor<2x1280x8x8xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%1563 = linalg.generic {indexing_maps = [#map11, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1562, %cst_3 : tensor<2x1280x8x8xf16>, tensor<f64>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.divf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x1280x8x8xf16>
%collapsed_1041 = tensor.collapse_shape %1563 [[0], [1], [2, 3]] : tensor<2x1280x8x8xf16> into tensor<2x1280x64xf16>
%expanded_1042 = tensor.expand_shape %collapsed_1041 [[0], [1, 2], [3]] : tensor<2x1280x64xf16> into tensor<2x32x40x64xf16>
%1564 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1565 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1564 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%1566 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1565 : tensor<f32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x40x64xf32>
%1567 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1042 : tensor<2x32x40x64xf16>) outs(%1566 : tensor<2x32x40x64xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x64xf32>
%1568 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1567 : tensor<2x32x40x64xf32>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%1569 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1570 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1568 : tensor<2x32x40x64xf64>) outs(%1569 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1571 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1570 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_713 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1572 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1568, %1571 : tensor<2x32x40x64xf64>, tensor<2x32x1x1xf64>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%1573 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1572 : tensor<2x32x40x64xf64>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%1574 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1575 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1573 : tensor<2x32x40x64xf64>) outs(%1574 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1576 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1575 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_713 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1577 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1576 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1578 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%1579 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1567 : tensor<2x32x40x64xf32>) outs(%1578 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1580 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1579 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_714 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1581 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1577, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%1582 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1581 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1583 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1042, %1580 : tensor<2x32x40x64xf16>, tensor<2x32x1x1xf32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x40x64xf32>
%1584 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1583, %1582 : tensor<2x32x40x64xf32>, tensor<2x32x1x1xf32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x64xf32>
%collapsed_1043 = tensor.collapse_shape %1584 [[0], [1, 2], [3]] : tensor<2x32x40x64xf32> into tensor<2x1280x64xf32>
%expanded_1044 = tensor.expand_shape %collapsed_1043 [[0], [1], [2, 3]] : tensor<2x1280x64xf32> into tensor<2x1280x8x8xf32>
%expanded_1045 = tensor.expand_shape %cst_250 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%1585 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1044, %expanded_1045 : tensor<2x1280x8x8xf32>, tensor<1280x1x1xf16>) outs(%1513 : tensor<2x1280x8x8xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x8x8xf32>
%expanded_1046 = tensor.expand_shape %cst_251 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%1586 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1585, %expanded_1046 : tensor<2x1280x8x8xf32>, tensor<1280x1x1xf16>) outs(%1513 : tensor<2x1280x8x8xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x8x8xf32>
%1587 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1588 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1587 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%1589 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1588 : tensor<f16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%1590 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1586 : tensor<2x1280x8x8xf32>) outs(%1589 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%1591 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1590 : tensor<2x1280x8x8xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280x8x8xf16>
%1592 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1591, %1590 : tensor<2x1280x8x8xf16>, tensor<2x1280x8x8xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%padded_1047 = tensor.pad %1592 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x1280x8x8xf16> to tensor<2x1280x10x10xf16>
%1593 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_253 : tensor<1280xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%1594 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_1047, %cst_252 : tensor<2x1280x10x10xf16>, tensor<1280x1280x3x3xf16>) outs(%1593 : tensor<2x1280x8x8xf16>) -> tensor<2x1280x8x8xf16>
%1595 = linalg.generic {indexing_maps = [#map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%40 : tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280xf16>
%1596 = linalg.generic {indexing_maps = [#map5, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%1595, %40 : tensor<2x1280xf16>, tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280xf16>
%1597 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_254 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%1598 = linalg.fill ins(%cst_694 : f16) outs(%30 : tensor<2x1280xf16>) -> tensor<2x1280xf16>
%1599 = linalg.matmul ins(%1596, %1597 : tensor<2x1280xf16>, tensor<1280x1280xf16>) outs(%1598 : tensor<2x1280xf16>) -> tensor<2x1280xf16>
%1600 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_255, %1599 : tensor<1280xf16>, tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280xf16>
%expanded_1048 = tensor.expand_shape %1600 [[0], [1, 2, 3]] : tensor<2x1280xf16> into tensor<2x1280x1x1xf16>
%1601 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1594, %expanded_1048 : tensor<2x1280x8x8xf16>, tensor<2x1280x1x1xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%collapsed_1049 = tensor.collapse_shape %1601 [[0], [1], [2, 3]] : tensor<2x1280x8x8xf16> into tensor<2x1280x64xf16>
%expanded_1050 = tensor.expand_shape %collapsed_1049 [[0], [1, 2], [3]] : tensor<2x1280x64xf16> into tensor<2x32x40x64xf16>
%1602 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1603 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1602 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%1604 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1603 : tensor<f32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x40x64xf32>
%1605 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1050 : tensor<2x32x40x64xf16>) outs(%1604 : tensor<2x32x40x64xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x64xf32>
%1606 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1605 : tensor<2x32x40x64xf32>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%1607 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1608 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1606 : tensor<2x32x40x64xf64>) outs(%1607 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1609 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1608 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_713 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1610 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1606, %1609 : tensor<2x32x40x64xf64>, tensor<2x32x1x1xf64>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%1611 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1610 : tensor<2x32x40x64xf64>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%1612 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1613 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1611 : tensor<2x32x40x64xf64>) outs(%1612 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1614 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1613 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_713 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1615 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1614 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1616 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%1617 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1605 : tensor<2x32x40x64xf32>) outs(%1616 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1618 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1617 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_714 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1619 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1615, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%1620 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1619 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1621 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1050, %1618 : tensor<2x32x40x64xf16>, tensor<2x32x1x1xf32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x40x64xf32>
%1622 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1621, %1620 : tensor<2x32x40x64xf32>, tensor<2x32x1x1xf32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x64xf32>
%collapsed_1051 = tensor.collapse_shape %1622 [[0], [1, 2], [3]] : tensor<2x32x40x64xf32> into tensor<2x1280x64xf32>
%expanded_1052 = tensor.expand_shape %collapsed_1051 [[0], [1], [2, 3]] : tensor<2x1280x64xf32> into tensor<2x1280x8x8xf32>
%expanded_1053 = tensor.expand_shape %cst_256 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%1623 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1052, %expanded_1053 : tensor<2x1280x8x8xf32>, tensor<1280x1x1xf16>) outs(%1513 : tensor<2x1280x8x8xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x8x8xf32>
%expanded_1054 = tensor.expand_shape %cst_257 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%1624 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1623, %expanded_1054 : tensor<2x1280x8x8xf32>, tensor<1280x1x1xf16>) outs(%1513 : tensor<2x1280x8x8xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x8x8xf32>
%1625 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1626 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1625 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%1627 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1626 : tensor<f16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%1628 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1624 : tensor<2x1280x8x8xf32>) outs(%1627 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%1629 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1628 : tensor<2x1280x8x8xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280x8x8xf16>
%1630 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1629, %1628 : tensor<2x1280x8x8xf16>, tensor<2x1280x8x8xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%padded_1055 = tensor.pad %1630 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x1280x8x8xf16> to tensor<2x1280x10x10xf16>
%1631 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_259 : tensor<1280xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%1632 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_1055, %cst_258 : tensor<2x1280x10x10xf16>, tensor<1280x1280x3x3xf16>) outs(%1631 : tensor<2x1280x8x8xf16>) -> tensor<2x1280x8x8xf16>
%1633 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1563, %1632 : tensor<2x1280x8x8xf16>, tensor<2x1280x8x8xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%1634 = linalg.generic {indexing_maps = [#map11, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1633, %cst_3 : tensor<2x1280x8x8xf16>, tensor<f64>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.divf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x1280x8x8xf16>
%collapsed_1056 = tensor.collapse_shape %1634 [[0], [1], [2, 3]] : tensor<2x1280x8x8xf16> into tensor<2x1280x64xf16>
%expanded_1057 = tensor.expand_shape %collapsed_1056 [[0], [1, 2], [3]] : tensor<2x1280x64xf16> into tensor<2x32x40x64xf16>
%1635 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1636 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1635 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%1637 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1636 : tensor<f32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x40x64xf32>
%1638 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1057 : tensor<2x32x40x64xf16>) outs(%1637 : tensor<2x32x40x64xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x64xf32>
%1639 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1638 : tensor<2x32x40x64xf32>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%1640 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1641 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1639 : tensor<2x32x40x64xf64>) outs(%1640 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1642 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1641 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_713 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1643 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1639, %1642 : tensor<2x32x40x64xf64>, tensor<2x32x1x1xf64>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%1644 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1643 : tensor<2x32x40x64xf64>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%1645 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1646 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1644 : tensor<2x32x40x64xf64>) outs(%1645 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1647 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1646 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_713 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1648 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1647 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1649 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%1650 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1638 : tensor<2x32x40x64xf32>) outs(%1649 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1651 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1650 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_714 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1652 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1648, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%1653 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1652 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1654 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1057, %1651 : tensor<2x32x40x64xf16>, tensor<2x32x1x1xf32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x40x64xf32>
%1655 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1654, %1653 : tensor<2x32x40x64xf32>, tensor<2x32x1x1xf32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x64xf32>
%collapsed_1058 = tensor.collapse_shape %1655 [[0], [1, 2], [3]] : tensor<2x32x40x64xf32> into tensor<2x1280x64xf32>
%expanded_1059 = tensor.expand_shape %collapsed_1058 [[0], [1], [2, 3]] : tensor<2x1280x64xf32> into tensor<2x1280x8x8xf32>
%expanded_1060 = tensor.expand_shape %cst_260 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%1656 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1059, %expanded_1060 : tensor<2x1280x8x8xf32>, tensor<1280x1x1xf16>) outs(%1513 : tensor<2x1280x8x8xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x8x8xf32>
%expanded_1061 = tensor.expand_shape %cst_261 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%1657 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1656, %expanded_1061 : tensor<2x1280x8x8xf32>, tensor<1280x1x1xf16>) outs(%1513 : tensor<2x1280x8x8xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x8x8xf32>
%1658 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1659 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1658 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%1660 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1659 : tensor<f16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%1661 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1657 : tensor<2x1280x8x8xf32>) outs(%1660 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%1662 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1661 : tensor<2x1280x8x8xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280x8x8xf16>
%1663 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1662, %1661 : tensor<2x1280x8x8xf16>, tensor<2x1280x8x8xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%padded_1062 = tensor.pad %1663 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x1280x8x8xf16> to tensor<2x1280x10x10xf16>
%1664 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_263 : tensor<1280xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%1665 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_1062, %cst_262 : tensor<2x1280x10x10xf16>, tensor<1280x1280x3x3xf16>) outs(%1664 : tensor<2x1280x8x8xf16>) -> tensor<2x1280x8x8xf16>
%1666 = linalg.generic {indexing_maps = [#map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%40 : tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280xf16>
%1667 = linalg.generic {indexing_maps = [#map5, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%1666, %40 : tensor<2x1280xf16>, tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280xf16>
%1668 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_264 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%1669 = linalg.fill ins(%cst_694 : f16) outs(%30 : tensor<2x1280xf16>) -> tensor<2x1280xf16>
%1670 = linalg.matmul ins(%1667, %1668 : tensor<2x1280xf16>, tensor<1280x1280xf16>) outs(%1669 : tensor<2x1280xf16>) -> tensor<2x1280xf16>
%1671 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_265, %1670 : tensor<1280xf16>, tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280xf16>
%expanded_1063 = tensor.expand_shape %1671 [[0], [1, 2, 3]] : tensor<2x1280xf16> into tensor<2x1280x1x1xf16>
%1672 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1665, %expanded_1063 : tensor<2x1280x8x8xf16>, tensor<2x1280x1x1xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%collapsed_1064 = tensor.collapse_shape %1672 [[0], [1], [2, 3]] : tensor<2x1280x8x8xf16> into tensor<2x1280x64xf16>
%expanded_1065 = tensor.expand_shape %collapsed_1064 [[0], [1, 2], [3]] : tensor<2x1280x64xf16> into tensor<2x32x40x64xf16>
%1673 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1674 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1673 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%1675 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1674 : tensor<f32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x40x64xf32>
%1676 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1065 : tensor<2x32x40x64xf16>) outs(%1675 : tensor<2x32x40x64xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x64xf32>
%1677 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1676 : tensor<2x32x40x64xf32>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%1678 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1679 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1677 : tensor<2x32x40x64xf64>) outs(%1678 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1680 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1679 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_713 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1681 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1677, %1680 : tensor<2x32x40x64xf64>, tensor<2x32x1x1xf64>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%1682 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1681 : tensor<2x32x40x64xf64>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%1683 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1684 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1682 : tensor<2x32x40x64xf64>) outs(%1683 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1685 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1684 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_713 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1686 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1685 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1687 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%1688 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1676 : tensor<2x32x40x64xf32>) outs(%1687 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1689 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1688 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_714 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1690 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1686, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%1691 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1690 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1692 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1065, %1689 : tensor<2x32x40x64xf16>, tensor<2x32x1x1xf32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x40x64xf32>
%1693 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1692, %1691 : tensor<2x32x40x64xf32>, tensor<2x32x1x1xf32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x64xf32>
%collapsed_1066 = tensor.collapse_shape %1693 [[0], [1, 2], [3]] : tensor<2x32x40x64xf32> into tensor<2x1280x64xf32>
%expanded_1067 = tensor.expand_shape %collapsed_1066 [[0], [1], [2, 3]] : tensor<2x1280x64xf32> into tensor<2x1280x8x8xf32>
%expanded_1068 = tensor.expand_shape %cst_266 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%1694 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1067, %expanded_1068 : tensor<2x1280x8x8xf32>, tensor<1280x1x1xf16>) outs(%1513 : tensor<2x1280x8x8xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x8x8xf32>
%expanded_1069 = tensor.expand_shape %cst_267 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%1695 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1694, %expanded_1069 : tensor<2x1280x8x8xf32>, tensor<1280x1x1xf16>) outs(%1513 : tensor<2x1280x8x8xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x8x8xf32>
%1696 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1697 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1696 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%1698 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1697 : tensor<f16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%1699 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1695 : tensor<2x1280x8x8xf32>) outs(%1698 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%1700 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1699 : tensor<2x1280x8x8xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280x8x8xf16>
%1701 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1700, %1699 : tensor<2x1280x8x8xf16>, tensor<2x1280x8x8xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%padded_1070 = tensor.pad %1701 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x1280x8x8xf16> to tensor<2x1280x10x10xf16>
%1702 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_269 : tensor<1280xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%1703 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_1070, %cst_268 : tensor<2x1280x10x10xf16>, tensor<1280x1280x3x3xf16>) outs(%1702 : tensor<2x1280x8x8xf16>) -> tensor<2x1280x8x8xf16>
%1704 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1634, %1703 : tensor<2x1280x8x8xf16>, tensor<2x1280x8x8xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%1705 = linalg.generic {indexing_maps = [#map11, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1704, %cst_5 : tensor<2x1280x8x8xf16>, tensor<i64>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: i64, %out: f16):
%4280 = arith.sitofp %in_1640 : i64 to f16
%4281 = arith.divf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x1280x8x8xf16>
%collapsed_1071 = tensor.collapse_shape %1705 [[0], [1], [2, 3]] : tensor<2x1280x8x8xf16> into tensor<2x1280x64xf16>
%expanded_1072 = tensor.expand_shape %collapsed_1071 [[0], [1, 2], [3]] : tensor<2x1280x64xf16> into tensor<2x32x40x64xf16>
%1706 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1707 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1706 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%1708 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1707 : tensor<f32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x40x64xf32>
%1709 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1072 : tensor<2x32x40x64xf16>) outs(%1708 : tensor<2x32x40x64xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x64xf32>
%1710 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1709 : tensor<2x32x40x64xf32>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%1711 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1712 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1710 : tensor<2x32x40x64xf64>) outs(%1711 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1713 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1712 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_713 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1714 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1710, %1713 : tensor<2x32x40x64xf64>, tensor<2x32x1x1xf64>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%1715 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1714 : tensor<2x32x40x64xf64>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%1716 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1717 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1715 : tensor<2x32x40x64xf64>) outs(%1716 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1718 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1717 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_713 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1719 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1718 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1720 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%1721 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1709 : tensor<2x32x40x64xf32>) outs(%1720 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1722 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1721 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_714 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1723 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1719, %cst_2 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%1724 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1723 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1725 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1072, %1722 : tensor<2x32x40x64xf16>, tensor<2x32x1x1xf32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x40x64xf32>
%1726 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1725, %1724 : tensor<2x32x40x64xf32>, tensor<2x32x1x1xf32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x64xf32>
%collapsed_1073 = tensor.collapse_shape %1726 [[0], [1, 2], [3]] : tensor<2x32x40x64xf32> into tensor<2x1280x64xf32>
%expanded_1074 = tensor.expand_shape %collapsed_1073 [[0], [1], [2, 3]] : tensor<2x1280x64xf32> into tensor<2x1280x8x8xf32>
%expanded_1075 = tensor.expand_shape %cst_270 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%1727 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1074, %expanded_1075 : tensor<2x1280x8x8xf32>, tensor<1280x1x1xf16>) outs(%1513 : tensor<2x1280x8x8xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x8x8xf32>
%expanded_1076 = tensor.expand_shape %cst_271 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%1728 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1727, %expanded_1076 : tensor<2x1280x8x8xf32>, tensor<1280x1x1xf16>) outs(%1513 : tensor<2x1280x8x8xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x8x8xf32>
%1729 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1730 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1729 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%1731 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1730 : tensor<f16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%1732 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1728 : tensor<2x1280x8x8xf32>) outs(%1731 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%1733 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_273 : tensor<1280xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%1734 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%1732, %cst_272 : tensor<2x1280x8x8xf16>, tensor<1280x1280x1x1xf16>) outs(%1733 : tensor<2x1280x8x8xf16>) -> tensor<2x1280x8x8xf16>
%1735 = tensor.empty() : tensor<2x8x8x1280xf16>
%1736 = linalg.generic {indexing_maps = [#map11, #map15], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1734 : tensor<2x1280x8x8xf16>) outs(%1735 : tensor<2x8x8x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x8x1280xf16>
%collapsed_1077 = tensor.collapse_shape %1736 [[0], [1, 2], [3]] : tensor<2x8x8x1280xf16> into tensor<2x64x1280xf16>
%1737 = tensor.empty() : tensor<2x64x1xf16>
%1738 = linalg.fill ins(%cst_694 : f16) outs(%1737 : tensor<2x64x1xf16>) -> tensor<2x64x1xf16>
%1739 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%collapsed_1077 : tensor<2x64x1280xf16>) outs(%1738 : tensor<2x64x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1xf16>
%1740 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1739 : tensor<2x64x1xf16>) outs(%1737 : tensor<2x64x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1xf16>
%1741 = tensor.empty() : tensor<2x64x1280xf16>
%1742 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1740 : tensor<2x64x1xf16>) outs(%1741 : tensor<2x64x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x64x1280xf16>
%1743 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%collapsed_1077, %1742 : tensor<2x64x1280xf16>, tensor<2x64x1280xf16>) outs(%1741 : tensor<2x64x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1280xf16>
%1744 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1743 : tensor<2x64x1280xf16>) outs(%1741 : tensor<2x64x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.mulf %in, %in : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1280xf16>
%1745 = linalg.fill ins(%cst_694 : f16) outs(%1737 : tensor<2x64x1xf16>) -> tensor<2x64x1xf16>
%1746 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%1744 : tensor<2x64x1280xf16>) outs(%1745 : tensor<2x64x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1xf16>
%1747 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1746 : tensor<2x64x1xf16>) outs(%1737 : tensor<2x64x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1xf16>
%1748 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1747 : tensor<2x64x1xf16>) outs(%1737 : tensor<2x64x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.truncf %cst_700 : f64 to f16
%4281 = arith.addf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x64x1xf16>
%1749 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1748 : tensor<2x64x1xf16>) outs(%1737 : tensor<2x64x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.rsqrt %in : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1xf16>
%1750 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1749 : tensor<2x64x1xf16>) outs(%1741 : tensor<2x64x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x64x1280xf16>
%1751 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1743, %1750 : tensor<2x64x1280xf16>, tensor<2x64x1280xf16>) outs(%1741 : tensor<2x64x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1280xf16>
%1752 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1751, %cst_274 : tensor<2x64x1280xf16>, tensor<1280xf16>) outs(%1741 : tensor<2x64x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1280xf16>
%1753 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1752, %cst_275 : tensor<2x64x1280xf16>, tensor<1280xf16>) outs(%1741 : tensor<2x64x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1280xf16>
%1754 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_276 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%collapsed_1078 = tensor.collapse_shape %1753 [[0, 1], [2]] : tensor<2x64x1280xf16> into tensor<128x1280xf16>
%1755 = tensor.empty() : tensor<128x1280xf16>
%1756 = linalg.fill ins(%cst_694 : f16) outs(%1755 : tensor<128x1280xf16>) -> tensor<128x1280xf16>
%1757 = linalg.matmul ins(%collapsed_1078, %1754 : tensor<128x1280xf16>, tensor<1280x1280xf16>) outs(%1756 : tensor<128x1280xf16>) -> tensor<128x1280xf16>
%1758 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_277 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%1759 = linalg.fill ins(%cst_694 : f16) outs(%1755 : tensor<128x1280xf16>) -> tensor<128x1280xf16>
%1760 = linalg.matmul ins(%collapsed_1078, %1758 : tensor<128x1280xf16>, tensor<1280x1280xf16>) outs(%1759 : tensor<128x1280xf16>) -> tensor<128x1280xf16>
%1761 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_278 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%1762 = linalg.fill ins(%cst_694 : f16) outs(%1755 : tensor<128x1280xf16>) -> tensor<128x1280xf16>
%1763 = linalg.matmul ins(%collapsed_1078, %1761 : tensor<128x1280xf16>, tensor<1280x1280xf16>) outs(%1762 : tensor<128x1280xf16>) -> tensor<128x1280xf16>
%expanded_1079 = tensor.expand_shape %1757 [[0, 1], [2, 3]] : tensor<128x1280xf16> into tensor<2x64x8x160xf16>
%1764 = tensor.empty() : tensor<2x8x64x160xf16>
%1765 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1079 : tensor<2x64x8x160xf16>) outs(%1764 : tensor<2x8x64x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x64x160xf16>
%collapsed_1080 = tensor.collapse_shape %1765 [[0, 1], [2], [3]] : tensor<2x8x64x160xf16> into tensor<16x64x160xf16>
%expanded_1081 = tensor.expand_shape %1760 [[0, 1], [2, 3]] : tensor<128x1280xf16> into tensor<2x64x8x160xf16>
%1766 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1081 : tensor<2x64x8x160xf16>) outs(%1764 : tensor<2x8x64x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x64x160xf16>
%collapsed_1082 = tensor.collapse_shape %1766 [[0, 1], [2], [3]] : tensor<2x8x64x160xf16> into tensor<16x64x160xf16>
%expanded_1083 = tensor.expand_shape %1763 [[0, 1], [2, 3]] : tensor<128x1280xf16> into tensor<2x64x8x160xf16>
%1767 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1083 : tensor<2x64x8x160xf16>) outs(%1764 : tensor<2x8x64x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x64x160xf16>
%collapsed_1084 = tensor.collapse_shape %1767 [[0, 1], [2], [3]] : tensor<2x8x64x160xf16> into tensor<16x64x160xf16>
%1768 = tensor.empty() : tensor<16x160x64xf16>
%1769 = linalg.generic {indexing_maps = [#map16, #map20], iterator_types = ["parallel", "parallel", "parallel"]} ins(%collapsed_1082 : tensor<16x64x160xf16>) outs(%1768 : tensor<16x160x64xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<16x160x64xf16>
%1770 = tensor.empty() : tensor<16x64x64xf16>
%1771 = linalg.fill ins(%cst_694 : f16) outs(%1770 : tensor<16x64x64xf16>) -> tensor<16x64x64xf16>
%1772 = linalg.batch_matmul ins(%collapsed_1080, %1769 : tensor<16x64x160xf16>, tensor<16x160x64xf16>) outs(%1771 : tensor<16x64x64xf16>) -> tensor<16x64x64xf16>
%1773 = linalg.generic {indexing_maps = [#map16, #map21, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1772, %cst : tensor<16x64x64xf16>, tensor<f64>) outs(%1770 : tensor<16x64x64xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.mulf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<16x64x64xf16>
%1774 = tensor.empty() : tensor<16x64x1xi64>
%1775 = linalg.fill ins(%c0_i64 : i64) outs(%1774 : tensor<16x64x1xi64>) -> tensor<16x64x1xi64>
%1776 = tensor.empty() : tensor<16x64x1xf16>
%1777 = linalg.fill ins(%cst_696 : f16) outs(%1776 : tensor<16x64x1xf16>) -> tensor<16x64x1xf16>
%1778:2 = linalg.generic {indexing_maps = [#map16, #map17, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%1773 : tensor<16x64x64xf16>) outs(%1777, %1775 : tensor<16x64x1xf16>, tensor<16x64x1xi64>) {
^bb0(%in: f16, %out: f16, %out_1640: i64):
%4280 = linalg.index 2 : index
%4281 = arith.index_cast %4280 : index to i64
%4282 = arith.maxf %in, %out : f16
%4283 = arith.cmpf ogt, %in, %out : f16
%4284 = arith.select %4283, %4281, %out_1640 : i64
linalg.yield %4282, %4284 : f16, i64
} -> (tensor<16x64x1xf16>, tensor<16x64x1xi64>)
%1779 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1773, %1778#0 : tensor<16x64x64xf16>, tensor<16x64x1xf16>) outs(%1770 : tensor<16x64x64xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x64x64xf16>
%1780 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1779 : tensor<16x64x64xf16>) outs(%1770 : tensor<16x64x64xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.exp %in : f16
linalg.yield %4280 : f16
} -> tensor<16x64x64xf16>
%1781 = linalg.fill ins(%cst_694 : f16) outs(%1776 : tensor<16x64x1xf16>) -> tensor<16x64x1xf16>
%1782 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%1780 : tensor<16x64x64xf16>) outs(%1781 : tensor<16x64x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<16x64x1xf16>
%1783 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1780, %1782 : tensor<16x64x64xf16>, tensor<16x64x1xf16>) outs(%1770 : tensor<16x64x64xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.divf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x64x64xf16>
%1784 = tensor.empty() : tensor<16x64x160xf16>
%1785 = linalg.fill ins(%cst_694 : f16) outs(%1784 : tensor<16x64x160xf16>) -> tensor<16x64x160xf16>
%1786 = linalg.batch_matmul ins(%1783, %collapsed_1084 : tensor<16x64x64xf16>, tensor<16x64x160xf16>) outs(%1785 : tensor<16x64x160xf16>) -> tensor<16x64x160xf16>
%expanded_1085 = tensor.expand_shape %1786 [[0, 1], [2], [3]] : tensor<16x64x160xf16> into tensor<2x8x64x160xf16>
%1787 = tensor.empty() : tensor<2x64x8x160xf16>
%1788 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1085 : tensor<2x8x64x160xf16>) outs(%1787 : tensor<2x64x8x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x64x8x160xf16>
%1789 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_279 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%collapsed_1086 = tensor.collapse_shape %1788 [[0, 1], [2, 3]] : tensor<2x64x8x160xf16> into tensor<128x1280xf16>
%1790 = linalg.fill ins(%cst_694 : f16) outs(%1755 : tensor<128x1280xf16>) -> tensor<128x1280xf16>
%1791 = linalg.matmul ins(%collapsed_1086, %1789 : tensor<128x1280xf16>, tensor<1280x1280xf16>) outs(%1790 : tensor<128x1280xf16>) -> tensor<128x1280xf16>
%1792 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_280, %1791 : tensor<1280xf16>, tensor<128x1280xf16>) outs(%1755 : tensor<128x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<128x1280xf16>
%expanded_1087 = tensor.expand_shape %1792 [[0, 1], [2]] : tensor<128x1280xf16> into tensor<2x64x1280xf16>
%1793 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%expanded_1087, %collapsed_1077 : tensor<2x64x1280xf16>, tensor<2x64x1280xf16>) outs(%1741 : tensor<2x64x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1280xf16>
%1794 = linalg.fill ins(%cst_694 : f16) outs(%1737 : tensor<2x64x1xf16>) -> tensor<2x64x1xf16>
%1795 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%1793 : tensor<2x64x1280xf16>) outs(%1794 : tensor<2x64x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1xf16>
%1796 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1795 : tensor<2x64x1xf16>) outs(%1737 : tensor<2x64x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1xf16>
%1797 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1796 : tensor<2x64x1xf16>) outs(%1741 : tensor<2x64x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x64x1280xf16>
%1798 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1793, %1797 : tensor<2x64x1280xf16>, tensor<2x64x1280xf16>) outs(%1741 : tensor<2x64x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1280xf16>
%1799 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1798 : tensor<2x64x1280xf16>) outs(%1741 : tensor<2x64x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.mulf %in, %in : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1280xf16>
%1800 = linalg.fill ins(%cst_694 : f16) outs(%1737 : tensor<2x64x1xf16>) -> tensor<2x64x1xf16>
%1801 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%1799 : tensor<2x64x1280xf16>) outs(%1800 : tensor<2x64x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1xf16>
%1802 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1801 : tensor<2x64x1xf16>) outs(%1737 : tensor<2x64x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1xf16>
%1803 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1802 : tensor<2x64x1xf16>) outs(%1737 : tensor<2x64x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.truncf %cst_700 : f64 to f16
%4281 = arith.addf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x64x1xf16>
%1804 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1803 : tensor<2x64x1xf16>) outs(%1737 : tensor<2x64x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.rsqrt %in : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1xf16>
%1805 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1804 : tensor<2x64x1xf16>) outs(%1741 : tensor<2x64x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x64x1280xf16>
%1806 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1798, %1805 : tensor<2x64x1280xf16>, tensor<2x64x1280xf16>) outs(%1741 : tensor<2x64x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1280xf16>
%1807 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1806, %cst_281 : tensor<2x64x1280xf16>, tensor<1280xf16>) outs(%1741 : tensor<2x64x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1280xf16>
%1808 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1807, %cst_282 : tensor<2x64x1280xf16>, tensor<1280xf16>) outs(%1741 : tensor<2x64x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1280xf16>
%1809 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_283 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%collapsed_1088 = tensor.collapse_shape %1808 [[0, 1], [2]] : tensor<2x64x1280xf16> into tensor<128x1280xf16>
%1810 = linalg.fill ins(%cst_694 : f16) outs(%1755 : tensor<128x1280xf16>) -> tensor<128x1280xf16>
%1811 = linalg.matmul ins(%collapsed_1088, %1809 : tensor<128x1280xf16>, tensor<1280x1280xf16>) outs(%1810 : tensor<128x1280xf16>) -> tensor<128x1280xf16>
%1812 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_284 : tensor<1280x768xf16>) outs(%1194 : tensor<768x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<768x1280xf16>
%1813 = linalg.fill ins(%cst_694 : f16) outs(%1196 : tensor<154x1280xf16>) -> tensor<154x1280xf16>
%1814 = linalg.matmul ins(%collapsed_761, %1812 : tensor<154x768xf16>, tensor<768x1280xf16>) outs(%1813 : tensor<154x1280xf16>) -> tensor<154x1280xf16>
%1815 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_285 : tensor<1280x768xf16>) outs(%1194 : tensor<768x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<768x1280xf16>
%1816 = linalg.fill ins(%cst_694 : f16) outs(%1196 : tensor<154x1280xf16>) -> tensor<154x1280xf16>
%1817 = linalg.matmul ins(%collapsed_761, %1815 : tensor<154x768xf16>, tensor<768x1280xf16>) outs(%1816 : tensor<154x1280xf16>) -> tensor<154x1280xf16>
%expanded_1089 = tensor.expand_shape %1811 [[0, 1], [2, 3]] : tensor<128x1280xf16> into tensor<2x64x8x160xf16>
%1818 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1089 : tensor<2x64x8x160xf16>) outs(%1764 : tensor<2x8x64x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x64x160xf16>
%collapsed_1090 = tensor.collapse_shape %1818 [[0, 1], [2], [3]] : tensor<2x8x64x160xf16> into tensor<16x64x160xf16>
%expanded_1091 = tensor.expand_shape %1814 [[0, 1], [2, 3]] : tensor<154x1280xf16> into tensor<2x77x8x160xf16>
%1819 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1091 : tensor<2x77x8x160xf16>) outs(%1203 : tensor<2x8x77x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x77x160xf16>
%collapsed_1092 = tensor.collapse_shape %1819 [[0, 1], [2], [3]] : tensor<2x8x77x160xf16> into tensor<16x77x160xf16>
%expanded_1093 = tensor.expand_shape %1817 [[0, 1], [2, 3]] : tensor<154x1280xf16> into tensor<2x77x8x160xf16>
%1820 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1093 : tensor<2x77x8x160xf16>) outs(%1203 : tensor<2x8x77x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x77x160xf16>
%collapsed_1094 = tensor.collapse_shape %1820 [[0, 1], [2], [3]] : tensor<2x8x77x160xf16> into tensor<16x77x160xf16>
%1821 = linalg.generic {indexing_maps = [#map16, #map20], iterator_types = ["parallel", "parallel", "parallel"]} ins(%collapsed_1092 : tensor<16x77x160xf16>) outs(%1206 : tensor<16x160x77xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<16x160x77xf16>
%1822 = tensor.empty() : tensor<16x64x77xf16>
%1823 = linalg.fill ins(%cst_694 : f16) outs(%1822 : tensor<16x64x77xf16>) -> tensor<16x64x77xf16>
%1824 = linalg.batch_matmul ins(%collapsed_1090, %1821 : tensor<16x64x160xf16>, tensor<16x160x77xf16>) outs(%1823 : tensor<16x64x77xf16>) -> tensor<16x64x77xf16>
%1825 = linalg.generic {indexing_maps = [#map16, #map21, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1824, %cst : tensor<16x64x77xf16>, tensor<f64>) outs(%1822 : tensor<16x64x77xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.mulf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<16x64x77xf16>
%1826 = linalg.fill ins(%c0_i64 : i64) outs(%1774 : tensor<16x64x1xi64>) -> tensor<16x64x1xi64>
%1827 = linalg.fill ins(%cst_696 : f16) outs(%1776 : tensor<16x64x1xf16>) -> tensor<16x64x1xf16>
%1828:2 = linalg.generic {indexing_maps = [#map16, #map17, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%1825 : tensor<16x64x77xf16>) outs(%1827, %1826 : tensor<16x64x1xf16>, tensor<16x64x1xi64>) {
^bb0(%in: f16, %out: f16, %out_1640: i64):
%4280 = linalg.index 2 : index
%4281 = arith.index_cast %4280 : index to i64
%4282 = arith.maxf %in, %out : f16
%4283 = arith.cmpf ogt, %in, %out : f16
%4284 = arith.select %4283, %4281, %out_1640 : i64
linalg.yield %4282, %4284 : f16, i64
} -> (tensor<16x64x1xf16>, tensor<16x64x1xi64>)
%1829 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1825, %1828#0 : tensor<16x64x77xf16>, tensor<16x64x1xf16>) outs(%1822 : tensor<16x64x77xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x64x77xf16>
%1830 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1829 : tensor<16x64x77xf16>) outs(%1822 : tensor<16x64x77xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.exp %in : f16
linalg.yield %4280 : f16
} -> tensor<16x64x77xf16>
%1831 = linalg.fill ins(%cst_694 : f16) outs(%1776 : tensor<16x64x1xf16>) -> tensor<16x64x1xf16>
%1832 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%1830 : tensor<16x64x77xf16>) outs(%1831 : tensor<16x64x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<16x64x1xf16>
%1833 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1830, %1832 : tensor<16x64x77xf16>, tensor<16x64x1xf16>) outs(%1822 : tensor<16x64x77xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.divf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x64x77xf16>
%1834 = linalg.fill ins(%cst_694 : f16) outs(%1784 : tensor<16x64x160xf16>) -> tensor<16x64x160xf16>
%1835 = linalg.batch_matmul ins(%1833, %collapsed_1094 : tensor<16x64x77xf16>, tensor<16x77x160xf16>) outs(%1834 : tensor<16x64x160xf16>) -> tensor<16x64x160xf16>
%expanded_1095 = tensor.expand_shape %1835 [[0, 1], [2], [3]] : tensor<16x64x160xf16> into tensor<2x8x64x160xf16>
%1836 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1095 : tensor<2x8x64x160xf16>) outs(%1787 : tensor<2x64x8x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x64x8x160xf16>
%1837 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_286 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%collapsed_1096 = tensor.collapse_shape %1836 [[0, 1], [2, 3]] : tensor<2x64x8x160xf16> into tensor<128x1280xf16>
%1838 = linalg.fill ins(%cst_694 : f16) outs(%1755 : tensor<128x1280xf16>) -> tensor<128x1280xf16>
%1839 = linalg.matmul ins(%collapsed_1096, %1837 : tensor<128x1280xf16>, tensor<1280x1280xf16>) outs(%1838 : tensor<128x1280xf16>) -> tensor<128x1280xf16>
%1840 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_287, %1839 : tensor<1280xf16>, tensor<128x1280xf16>) outs(%1755 : tensor<128x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<128x1280xf16>
%expanded_1097 = tensor.expand_shape %1840 [[0, 1], [2]] : tensor<128x1280xf16> into tensor<2x64x1280xf16>
%1841 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%expanded_1097, %1793 : tensor<2x64x1280xf16>, tensor<2x64x1280xf16>) outs(%1741 : tensor<2x64x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1280xf16>
%1842 = linalg.fill ins(%cst_694 : f16) outs(%1737 : tensor<2x64x1xf16>) -> tensor<2x64x1xf16>
%1843 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%1841 : tensor<2x64x1280xf16>) outs(%1842 : tensor<2x64x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1xf16>
%1844 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1843 : tensor<2x64x1xf16>) outs(%1737 : tensor<2x64x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1xf16>
%1845 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1844 : tensor<2x64x1xf16>) outs(%1741 : tensor<2x64x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x64x1280xf16>
%1846 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1841, %1845 : tensor<2x64x1280xf16>, tensor<2x64x1280xf16>) outs(%1741 : tensor<2x64x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1280xf16>
%1847 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1846 : tensor<2x64x1280xf16>) outs(%1741 : tensor<2x64x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.mulf %in, %in : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1280xf16>
%1848 = linalg.fill ins(%cst_694 : f16) outs(%1737 : tensor<2x64x1xf16>) -> tensor<2x64x1xf16>
%1849 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%1847 : tensor<2x64x1280xf16>) outs(%1848 : tensor<2x64x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1xf16>
%1850 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1849 : tensor<2x64x1xf16>) outs(%1737 : tensor<2x64x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1xf16>
%1851 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1850 : tensor<2x64x1xf16>) outs(%1737 : tensor<2x64x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.truncf %cst_700 : f64 to f16
%4281 = arith.addf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x64x1xf16>
%1852 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1851 : tensor<2x64x1xf16>) outs(%1737 : tensor<2x64x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.rsqrt %in : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1xf16>
%1853 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1852 : tensor<2x64x1xf16>) outs(%1741 : tensor<2x64x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x64x1280xf16>
%1854 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1846, %1853 : tensor<2x64x1280xf16>, tensor<2x64x1280xf16>) outs(%1741 : tensor<2x64x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1280xf16>
%1855 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1854, %cst_288 : tensor<2x64x1280xf16>, tensor<1280xf16>) outs(%1741 : tensor<2x64x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1280xf16>
%1856 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1855, %cst_289 : tensor<2x64x1280xf16>, tensor<1280xf16>) outs(%1741 : tensor<2x64x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1280xf16>
%1857 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_290 : tensor<10240x1280xf16>) outs(%1243 : tensor<1280x10240xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x10240xf16>
%collapsed_1098 = tensor.collapse_shape %1856 [[0, 1], [2]] : tensor<2x64x1280xf16> into tensor<128x1280xf16>
%1858 = tensor.empty() : tensor<128x10240xf16>
%1859 = linalg.fill ins(%cst_694 : f16) outs(%1858 : tensor<128x10240xf16>) -> tensor<128x10240xf16>
%1860 = linalg.matmul ins(%collapsed_1098, %1857 : tensor<128x1280xf16>, tensor<1280x10240xf16>) outs(%1859 : tensor<128x10240xf16>) -> tensor<128x10240xf16>
%1861 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_291, %1860 : tensor<10240xf16>, tensor<128x10240xf16>) outs(%1858 : tensor<128x10240xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<128x10240xf16>
%expanded_1099 = tensor.expand_shape %1861 [[0, 1], [2]] : tensor<128x10240xf16> into tensor<2x64x10240xf16>
%extracted_slice_1100 = tensor.extract_slice %expanded_1099[0, 0, 0] [2, 64, 5120] [1, 1, 1] : tensor<2x64x10240xf16> to tensor<2x64x5120xf16>
%extracted_slice_1101 = tensor.extract_slice %expanded_1099[0, 0, 5120] [2, 64, 5120] [1, 1, 1] : tensor<2x64x10240xf16> to tensor<2x64x5120xf16>
%1862 = tensor.empty() : tensor<2x64x5120xf16>
%1863 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%extracted_slice_1101 : tensor<2x64x5120xf16>) outs(%1862 : tensor<2x64x5120xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.sqrt %cst_697 : f16
%4281 = arith.divf %in, %4280 : f16
%4282 = math.erf %4281 : f16
%4283 = arith.addf %4282, %cst_695 : f16
%4284 = arith.mulf %4283, %cst_698 : f16
%4285 = arith.mulf %in, %4284 : f16
linalg.yield %4285 : f16
} -> tensor<2x64x5120xf16>
%1864 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%extracted_slice_1100, %1863 : tensor<2x64x5120xf16>, tensor<2x64x5120xf16>) outs(%1862 : tensor<2x64x5120xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x64x5120xf16>
%1865 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_292 : tensor<1280x5120xf16>) outs(%1252 : tensor<5120x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<5120x1280xf16>
%collapsed_1102 = tensor.collapse_shape %1864 [[0, 1], [2]] : tensor<2x64x5120xf16> into tensor<128x5120xf16>
%1866 = linalg.fill ins(%cst_694 : f16) outs(%1755 : tensor<128x1280xf16>) -> tensor<128x1280xf16>
%1867 = linalg.matmul ins(%collapsed_1102, %1865 : tensor<128x5120xf16>, tensor<5120x1280xf16>) outs(%1866 : tensor<128x1280xf16>) -> tensor<128x1280xf16>
%1868 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_293, %1867 : tensor<1280xf16>, tensor<128x1280xf16>) outs(%1755 : tensor<128x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<128x1280xf16>
%expanded_1103 = tensor.expand_shape %1868 [[0, 1], [2]] : tensor<128x1280xf16> into tensor<2x64x1280xf16>
%1869 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%expanded_1103, %1841 : tensor<2x64x1280xf16>, tensor<2x64x1280xf16>) outs(%1741 : tensor<2x64x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x64x1280xf16>
%expanded_1104 = tensor.expand_shape %1869 [[0], [1, 2], [3]] : tensor<2x64x1280xf16> into tensor<2x8x8x1280xf16>
%1870 = linalg.generic {indexing_maps = [#map11, #map22], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1104 : tensor<2x8x8x1280xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%1871 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_295 : tensor<1280xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%1872 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%1870, %cst_294 : tensor<2x1280x8x8xf16>, tensor<1280x1280x1x1xf16>) outs(%1871 : tensor<2x1280x8x8xf16>) -> tensor<2x1280x8x8xf16>
%1873 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1872, %1705 : tensor<2x1280x8x8xf16>, tensor<2x1280x8x8xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%collapsed_1105 = tensor.collapse_shape %1873 [[0], [1], [2, 3]] : tensor<2x1280x8x8xf16> into tensor<2x1280x64xf16>
%expanded_1106 = tensor.expand_shape %collapsed_1105 [[0], [1, 2], [3]] : tensor<2x1280x64xf16> into tensor<2x32x40x64xf16>
%1874 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1875 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1874 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%1876 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1875 : tensor<f32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x40x64xf32>
%1877 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1106 : tensor<2x32x40x64xf16>) outs(%1876 : tensor<2x32x40x64xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x64xf32>
%1878 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1877 : tensor<2x32x40x64xf32>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%1879 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1880 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1878 : tensor<2x32x40x64xf64>) outs(%1879 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1881 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1880 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_713 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1882 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1878, %1881 : tensor<2x32x40x64xf64>, tensor<2x32x1x1xf64>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%1883 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1882 : tensor<2x32x40x64xf64>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%1884 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1885 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1883 : tensor<2x32x40x64xf64>) outs(%1884 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1886 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1885 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_713 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1887 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1886 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1888 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%1889 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1877 : tensor<2x32x40x64xf32>) outs(%1888 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1890 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1889 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_714 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1891 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1887, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%1892 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1891 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1893 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1106, %1890 : tensor<2x32x40x64xf16>, tensor<2x32x1x1xf32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x40x64xf32>
%1894 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1893, %1892 : tensor<2x32x40x64xf32>, tensor<2x32x1x1xf32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x64xf32>
%collapsed_1107 = tensor.collapse_shape %1894 [[0], [1, 2], [3]] : tensor<2x32x40x64xf32> into tensor<2x1280x64xf32>
%expanded_1108 = tensor.expand_shape %collapsed_1107 [[0], [1], [2, 3]] : tensor<2x1280x64xf32> into tensor<2x1280x8x8xf32>
%expanded_1109 = tensor.expand_shape %cst_296 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%1895 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1108, %expanded_1109 : tensor<2x1280x8x8xf32>, tensor<1280x1x1xf16>) outs(%1513 : tensor<2x1280x8x8xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x8x8xf32>
%expanded_1110 = tensor.expand_shape %cst_297 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%1896 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1895, %expanded_1110 : tensor<2x1280x8x8xf32>, tensor<1280x1x1xf16>) outs(%1513 : tensor<2x1280x8x8xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x8x8xf32>
%1897 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1898 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1897 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%1899 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1898 : tensor<f16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%1900 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1896 : tensor<2x1280x8x8xf32>) outs(%1899 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%1901 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1900 : tensor<2x1280x8x8xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280x8x8xf16>
%1902 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1901, %1900 : tensor<2x1280x8x8xf16>, tensor<2x1280x8x8xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%padded_1111 = tensor.pad %1902 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x1280x8x8xf16> to tensor<2x1280x10x10xf16>
%1903 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_299 : tensor<1280xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%1904 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_1111, %cst_298 : tensor<2x1280x10x10xf16>, tensor<1280x1280x3x3xf16>) outs(%1903 : tensor<2x1280x8x8xf16>) -> tensor<2x1280x8x8xf16>
%1905 = linalg.generic {indexing_maps = [#map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%40 : tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280xf16>
%1906 = linalg.generic {indexing_maps = [#map5, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%1905, %40 : tensor<2x1280xf16>, tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280xf16>
%1907 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_300 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%1908 = linalg.fill ins(%cst_694 : f16) outs(%30 : tensor<2x1280xf16>) -> tensor<2x1280xf16>
%1909 = linalg.matmul ins(%1906, %1907 : tensor<2x1280xf16>, tensor<1280x1280xf16>) outs(%1908 : tensor<2x1280xf16>) -> tensor<2x1280xf16>
%1910 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_301, %1909 : tensor<1280xf16>, tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280xf16>
%expanded_1112 = tensor.expand_shape %1910 [[0], [1, 2, 3]] : tensor<2x1280xf16> into tensor<2x1280x1x1xf16>
%1911 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1904, %expanded_1112 : tensor<2x1280x8x8xf16>, tensor<2x1280x1x1xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%collapsed_1113 = tensor.collapse_shape %1911 [[0], [1], [2, 3]] : tensor<2x1280x8x8xf16> into tensor<2x1280x64xf16>
%expanded_1114 = tensor.expand_shape %collapsed_1113 [[0], [1, 2], [3]] : tensor<2x1280x64xf16> into tensor<2x32x40x64xf16>
%1912 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1913 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1912 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%1914 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1913 : tensor<f32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x40x64xf32>
%1915 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1114 : tensor<2x32x40x64xf16>) outs(%1914 : tensor<2x32x40x64xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x64xf32>
%1916 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1915 : tensor<2x32x40x64xf32>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%1917 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1918 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1916 : tensor<2x32x40x64xf64>) outs(%1917 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1919 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1918 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_713 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1920 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1916, %1919 : tensor<2x32x40x64xf64>, tensor<2x32x1x1xf64>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%1921 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1920 : tensor<2x32x40x64xf64>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%1922 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1923 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1921 : tensor<2x32x40x64xf64>) outs(%1922 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1924 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1923 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_713 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1925 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1924 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1926 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%1927 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1915 : tensor<2x32x40x64xf32>) outs(%1926 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1928 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1927 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_714 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1929 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1925, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%1930 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1929 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1931 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1114, %1928 : tensor<2x32x40x64xf16>, tensor<2x32x1x1xf32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x40x64xf32>
%1932 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1931, %1930 : tensor<2x32x40x64xf32>, tensor<2x32x1x1xf32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x64xf32>
%collapsed_1115 = tensor.collapse_shape %1932 [[0], [1, 2], [3]] : tensor<2x32x40x64xf32> into tensor<2x1280x64xf32>
%expanded_1116 = tensor.expand_shape %collapsed_1115 [[0], [1], [2, 3]] : tensor<2x1280x64xf32> into tensor<2x1280x8x8xf32>
%expanded_1117 = tensor.expand_shape %cst_302 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%1933 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1116, %expanded_1117 : tensor<2x1280x8x8xf32>, tensor<1280x1x1xf16>) outs(%1513 : tensor<2x1280x8x8xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x8x8xf32>
%expanded_1118 = tensor.expand_shape %cst_303 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%1934 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1933, %expanded_1118 : tensor<2x1280x8x8xf32>, tensor<1280x1x1xf16>) outs(%1513 : tensor<2x1280x8x8xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x8x8xf32>
%1935 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1936 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1935 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%1937 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1936 : tensor<f16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%1938 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1934 : tensor<2x1280x8x8xf32>) outs(%1937 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%1939 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1938 : tensor<2x1280x8x8xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280x8x8xf16>
%1940 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1939, %1938 : tensor<2x1280x8x8xf16>, tensor<2x1280x8x8xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%padded_1119 = tensor.pad %1940 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x1280x8x8xf16> to tensor<2x1280x10x10xf16>
%1941 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_305 : tensor<1280xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%1942 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_1119, %cst_304 : tensor<2x1280x10x10xf16>, tensor<1280x1280x3x3xf16>) outs(%1941 : tensor<2x1280x8x8xf16>) -> tensor<2x1280x8x8xf16>
%1943 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1873, %1942 : tensor<2x1280x8x8xf16>, tensor<2x1280x8x8xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%1944 = linalg.generic {indexing_maps = [#map11, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1943, %cst_5 : tensor<2x1280x8x8xf16>, tensor<i64>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: i64, %out: f16):
%4280 = arith.sitofp %in_1640 : i64 to f16
%4281 = arith.divf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x1280x8x8xf16>
%1945 = tensor.empty() : tensor<2x2560x8x8xf16>
%inserted_slice_1120 = tensor.insert_slice %1944 into %1945[0, 0, 0, 0] [2, 1280, 8, 8] [1, 1, 1, 1] : tensor<2x1280x8x8xf16> into tensor<2x2560x8x8xf16>
%inserted_slice_1121 = tensor.insert_slice %1634 into %inserted_slice_1120[0, 1280, 0, 0] [2, 1280, 8, 8] [1, 1, 1, 1] : tensor<2x1280x8x8xf16> into tensor<2x2560x8x8xf16>
%collapsed_1122 = tensor.collapse_shape %inserted_slice_1121 [[0], [1], [2, 3]] : tensor<2x2560x8x8xf16> into tensor<2x2560x64xf16>
%expanded_1123 = tensor.expand_shape %collapsed_1122 [[0], [1, 2], [3]] : tensor<2x2560x64xf16> into tensor<2x32x80x64xf16>
%1946 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1947 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1946 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%1948 = tensor.empty() : tensor<2x32x80x64xf32>
%1949 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1947 : tensor<f32>) outs(%1948 : tensor<2x32x80x64xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x80x64xf32>
%1950 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1123 : tensor<2x32x80x64xf16>) outs(%1949 : tensor<2x32x80x64xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x80x64xf32>
%1951 = tensor.empty() : tensor<2x32x80x64xf64>
%1952 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1950 : tensor<2x32x80x64xf32>) outs(%1951 : tensor<2x32x80x64xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x80x64xf64>
%1953 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1954 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1952 : tensor<2x32x80x64xf64>) outs(%1953 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1955 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1954 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_710 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1956 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1952, %1955 : tensor<2x32x80x64xf64>, tensor<2x32x1x1xf64>) outs(%1951 : tensor<2x32x80x64xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x80x64xf64>
%1957 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1956 : tensor<2x32x80x64xf64>) outs(%1951 : tensor<2x32x80x64xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x80x64xf64>
%1958 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1959 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1957 : tensor<2x32x80x64xf64>) outs(%1958 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1960 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1959 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_710 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1961 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1960 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1962 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%1963 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1950 : tensor<2x32x80x64xf32>) outs(%1962 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1964 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1963 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_711 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1965 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1961, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%1966 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1965 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%1967 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1123, %1964 : tensor<2x32x80x64xf16>, tensor<2x32x1x1xf32>) outs(%1948 : tensor<2x32x80x64xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x80x64xf32>
%1968 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1967, %1966 : tensor<2x32x80x64xf32>, tensor<2x32x1x1xf32>) outs(%1948 : tensor<2x32x80x64xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x80x64xf32>
%collapsed_1124 = tensor.collapse_shape %1968 [[0], [1, 2], [3]] : tensor<2x32x80x64xf32> into tensor<2x2560x64xf32>
%expanded_1125 = tensor.expand_shape %collapsed_1124 [[0], [1], [2, 3]] : tensor<2x2560x64xf32> into tensor<2x2560x8x8xf32>
%expanded_1126 = tensor.expand_shape %cst_306 [[0, 1, 2]] : tensor<2560xf16> into tensor<2560x1x1xf16>
%1969 = tensor.empty() : tensor<2x2560x8x8xf32>
%1970 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1125, %expanded_1126 : tensor<2x2560x8x8xf32>, tensor<2560x1x1xf16>) outs(%1969 : tensor<2x2560x8x8xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x2560x8x8xf32>
%expanded_1127 = tensor.expand_shape %cst_307 [[0, 1, 2]] : tensor<2560xf16> into tensor<2560x1x1xf16>
%1971 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1970, %expanded_1127 : tensor<2x2560x8x8xf32>, tensor<2560x1x1xf16>) outs(%1969 : tensor<2x2560x8x8xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x2560x8x8xf32>
%1972 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1973 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1972 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%1974 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1973 : tensor<f16>) outs(%1945 : tensor<2x2560x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x2560x8x8xf16>
%1975 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1971 : tensor<2x2560x8x8xf32>) outs(%1974 : tensor<2x2560x8x8xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x2560x8x8xf16>
%1976 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1975 : tensor<2x2560x8x8xf16>) outs(%1945 : tensor<2x2560x8x8xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x2560x8x8xf16>
%1977 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1976, %1975 : tensor<2x2560x8x8xf16>, tensor<2x2560x8x8xf16>) outs(%1945 : tensor<2x2560x8x8xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x2560x8x8xf16>
%padded_1128 = tensor.pad %1977 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x2560x8x8xf16> to tensor<2x2560x10x10xf16>
%1978 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_309 : tensor<1280xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%1979 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_1128, %cst_308 : tensor<2x2560x10x10xf16>, tensor<1280x2560x3x3xf16>) outs(%1978 : tensor<2x1280x8x8xf16>) -> tensor<2x1280x8x8xf16>
%1980 = linalg.generic {indexing_maps = [#map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%40 : tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280xf16>
%1981 = linalg.generic {indexing_maps = [#map5, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%1980, %40 : tensor<2x1280xf16>, tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280xf16>
%1982 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_310 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%1983 = linalg.fill ins(%cst_694 : f16) outs(%30 : tensor<2x1280xf16>) -> tensor<2x1280xf16>
%1984 = linalg.matmul ins(%1981, %1982 : tensor<2x1280xf16>, tensor<1280x1280xf16>) outs(%1983 : tensor<2x1280xf16>) -> tensor<2x1280xf16>
%1985 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_311, %1984 : tensor<1280xf16>, tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280xf16>
%expanded_1129 = tensor.expand_shape %1985 [[0], [1, 2, 3]] : tensor<2x1280xf16> into tensor<2x1280x1x1xf16>
%1986 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1979, %expanded_1129 : tensor<2x1280x8x8xf16>, tensor<2x1280x1x1xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%collapsed_1130 = tensor.collapse_shape %1986 [[0], [1], [2, 3]] : tensor<2x1280x8x8xf16> into tensor<2x1280x64xf16>
%expanded_1131 = tensor.expand_shape %collapsed_1130 [[0], [1, 2], [3]] : tensor<2x1280x64xf16> into tensor<2x32x40x64xf16>
%1987 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%1988 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%1987 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%1989 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1988 : tensor<f32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x40x64xf32>
%1990 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1131 : tensor<2x32x40x64xf16>) outs(%1989 : tensor<2x32x40x64xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x64xf32>
%1991 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1990 : tensor<2x32x40x64xf32>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%1992 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1993 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1991 : tensor<2x32x40x64xf64>) outs(%1992 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1994 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1993 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_713 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1995 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1991, %1994 : tensor<2x32x40x64xf64>, tensor<2x32x1x1xf64>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%1996 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1995 : tensor<2x32x40x64xf64>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%1997 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%1998 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1996 : tensor<2x32x40x64xf64>) outs(%1997 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%1999 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1998 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_713 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2000 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1999 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2001 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%2002 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%1990 : tensor<2x32x40x64xf32>) outs(%2001 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2003 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2002 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_714 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2004 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2000, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%2005 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2004 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2006 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1131, %2003 : tensor<2x32x40x64xf16>, tensor<2x32x1x1xf32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x40x64xf32>
%2007 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2006, %2005 : tensor<2x32x40x64xf32>, tensor<2x32x1x1xf32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x64xf32>
%collapsed_1132 = tensor.collapse_shape %2007 [[0], [1, 2], [3]] : tensor<2x32x40x64xf32> into tensor<2x1280x64xf32>
%expanded_1133 = tensor.expand_shape %collapsed_1132 [[0], [1], [2, 3]] : tensor<2x1280x64xf32> into tensor<2x1280x8x8xf32>
%expanded_1134 = tensor.expand_shape %cst_312 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%2008 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1133, %expanded_1134 : tensor<2x1280x8x8xf32>, tensor<1280x1x1xf16>) outs(%1513 : tensor<2x1280x8x8xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x8x8xf32>
%expanded_1135 = tensor.expand_shape %cst_313 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%2009 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2008, %expanded_1135 : tensor<2x1280x8x8xf32>, tensor<1280x1x1xf16>) outs(%1513 : tensor<2x1280x8x8xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x8x8xf32>
%2010 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%2011 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%2010 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%2012 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2011 : tensor<f16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%2013 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2009 : tensor<2x1280x8x8xf32>) outs(%2012 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%2014 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2013 : tensor<2x1280x8x8xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280x8x8xf16>
%2015 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2014, %2013 : tensor<2x1280x8x8xf16>, tensor<2x1280x8x8xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%padded_1136 = tensor.pad %2015 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x1280x8x8xf16> to tensor<2x1280x10x10xf16>
%2016 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_315 : tensor<1280xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%2017 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_1136, %cst_314 : tensor<2x1280x10x10xf16>, tensor<1280x1280x3x3xf16>) outs(%2016 : tensor<2x1280x8x8xf16>) -> tensor<2x1280x8x8xf16>
%2018 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_317 : tensor<1280xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%2019 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%inserted_slice_1121, %cst_316 : tensor<2x2560x8x8xf16>, tensor<1280x2560x1x1xf16>) outs(%2018 : tensor<2x1280x8x8xf16>) -> tensor<2x1280x8x8xf16>
%2020 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2019, %2017 : tensor<2x1280x8x8xf16>, tensor<2x1280x8x8xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%2021 = linalg.generic {indexing_maps = [#map11, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2020, %cst_3 : tensor<2x1280x8x8xf16>, tensor<f64>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.divf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x1280x8x8xf16>
%inserted_slice_1137 = tensor.insert_slice %2021 into %1945[0, 0, 0, 0] [2, 1280, 8, 8] [1, 1, 1, 1] : tensor<2x1280x8x8xf16> into tensor<2x2560x8x8xf16>
%inserted_slice_1138 = tensor.insert_slice %1563 into %inserted_slice_1137[0, 1280, 0, 0] [2, 1280, 8, 8] [1, 1, 1, 1] : tensor<2x1280x8x8xf16> into tensor<2x2560x8x8xf16>
%collapsed_1139 = tensor.collapse_shape %inserted_slice_1138 [[0], [1], [2, 3]] : tensor<2x2560x8x8xf16> into tensor<2x2560x64xf16>
%expanded_1140 = tensor.expand_shape %collapsed_1139 [[0], [1, 2], [3]] : tensor<2x2560x64xf16> into tensor<2x32x80x64xf16>
%2022 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%2023 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%2022 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%2024 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2023 : tensor<f32>) outs(%1948 : tensor<2x32x80x64xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x80x64xf32>
%2025 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1140 : tensor<2x32x80x64xf16>) outs(%2024 : tensor<2x32x80x64xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x80x64xf32>
%2026 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2025 : tensor<2x32x80x64xf32>) outs(%1951 : tensor<2x32x80x64xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x80x64xf64>
%2027 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%2028 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2026 : tensor<2x32x80x64xf64>) outs(%2027 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2029 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2028 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_710 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2030 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2026, %2029 : tensor<2x32x80x64xf64>, tensor<2x32x1x1xf64>) outs(%1951 : tensor<2x32x80x64xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x80x64xf64>
%2031 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2030 : tensor<2x32x80x64xf64>) outs(%1951 : tensor<2x32x80x64xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x80x64xf64>
%2032 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%2033 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2031 : tensor<2x32x80x64xf64>) outs(%2032 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2034 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2033 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_710 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2035 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2034 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2036 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%2037 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2025 : tensor<2x32x80x64xf32>) outs(%2036 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2038 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2037 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_711 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2039 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2035, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%2040 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2039 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2041 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1140, %2038 : tensor<2x32x80x64xf16>, tensor<2x32x1x1xf32>) outs(%1948 : tensor<2x32x80x64xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x80x64xf32>
%2042 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2041, %2040 : tensor<2x32x80x64xf32>, tensor<2x32x1x1xf32>) outs(%1948 : tensor<2x32x80x64xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x80x64xf32>
%collapsed_1141 = tensor.collapse_shape %2042 [[0], [1, 2], [3]] : tensor<2x32x80x64xf32> into tensor<2x2560x64xf32>
%expanded_1142 = tensor.expand_shape %collapsed_1141 [[0], [1], [2, 3]] : tensor<2x2560x64xf32> into tensor<2x2560x8x8xf32>
%expanded_1143 = tensor.expand_shape %cst_318 [[0, 1, 2]] : tensor<2560xf16> into tensor<2560x1x1xf16>
%2043 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1142, %expanded_1143 : tensor<2x2560x8x8xf32>, tensor<2560x1x1xf16>) outs(%1969 : tensor<2x2560x8x8xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x2560x8x8xf32>
%expanded_1144 = tensor.expand_shape %cst_319 [[0, 1, 2]] : tensor<2560xf16> into tensor<2560x1x1xf16>
%2044 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2043, %expanded_1144 : tensor<2x2560x8x8xf32>, tensor<2560x1x1xf16>) outs(%1969 : tensor<2x2560x8x8xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x2560x8x8xf32>
%2045 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%2046 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%2045 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%2047 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2046 : tensor<f16>) outs(%1945 : tensor<2x2560x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x2560x8x8xf16>
%2048 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2044 : tensor<2x2560x8x8xf32>) outs(%2047 : tensor<2x2560x8x8xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x2560x8x8xf16>
%2049 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2048 : tensor<2x2560x8x8xf16>) outs(%1945 : tensor<2x2560x8x8xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x2560x8x8xf16>
%2050 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2049, %2048 : tensor<2x2560x8x8xf16>, tensor<2x2560x8x8xf16>) outs(%1945 : tensor<2x2560x8x8xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x2560x8x8xf16>
%padded_1145 = tensor.pad %2050 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x2560x8x8xf16> to tensor<2x2560x10x10xf16>
%2051 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_321 : tensor<1280xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%2052 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_1145, %cst_320 : tensor<2x2560x10x10xf16>, tensor<1280x2560x3x3xf16>) outs(%2051 : tensor<2x1280x8x8xf16>) -> tensor<2x1280x8x8xf16>
%2053 = linalg.generic {indexing_maps = [#map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%40 : tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280xf16>
%2054 = linalg.generic {indexing_maps = [#map5, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%2053, %40 : tensor<2x1280xf16>, tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280xf16>
%2055 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_322 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%2056 = linalg.fill ins(%cst_694 : f16) outs(%30 : tensor<2x1280xf16>) -> tensor<2x1280xf16>
%2057 = linalg.matmul ins(%2054, %2055 : tensor<2x1280xf16>, tensor<1280x1280xf16>) outs(%2056 : tensor<2x1280xf16>) -> tensor<2x1280xf16>
%2058 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_323, %2057 : tensor<1280xf16>, tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280xf16>
%expanded_1146 = tensor.expand_shape %2058 [[0], [1, 2, 3]] : tensor<2x1280xf16> into tensor<2x1280x1x1xf16>
%2059 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2052, %expanded_1146 : tensor<2x1280x8x8xf16>, tensor<2x1280x1x1xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%collapsed_1147 = tensor.collapse_shape %2059 [[0], [1], [2, 3]] : tensor<2x1280x8x8xf16> into tensor<2x1280x64xf16>
%expanded_1148 = tensor.expand_shape %collapsed_1147 [[0], [1, 2], [3]] : tensor<2x1280x64xf16> into tensor<2x32x40x64xf16>
%2060 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%2061 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%2060 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%2062 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2061 : tensor<f32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x40x64xf32>
%2063 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1148 : tensor<2x32x40x64xf16>) outs(%2062 : tensor<2x32x40x64xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x64xf32>
%2064 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2063 : tensor<2x32x40x64xf32>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%2065 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%2066 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2064 : tensor<2x32x40x64xf64>) outs(%2065 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2067 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2066 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_713 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2068 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2064, %2067 : tensor<2x32x40x64xf64>, tensor<2x32x1x1xf64>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%2069 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2068 : tensor<2x32x40x64xf64>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%2070 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%2071 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2069 : tensor<2x32x40x64xf64>) outs(%2070 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2072 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2071 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_713 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2073 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2072 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2074 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%2075 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2063 : tensor<2x32x40x64xf32>) outs(%2074 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2076 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2075 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_714 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2077 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2073, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%2078 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2077 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2079 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1148, %2076 : tensor<2x32x40x64xf16>, tensor<2x32x1x1xf32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x40x64xf32>
%2080 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2079, %2078 : tensor<2x32x40x64xf32>, tensor<2x32x1x1xf32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x64xf32>
%collapsed_1149 = tensor.collapse_shape %2080 [[0], [1, 2], [3]] : tensor<2x32x40x64xf32> into tensor<2x1280x64xf32>
%expanded_1150 = tensor.expand_shape %collapsed_1149 [[0], [1], [2, 3]] : tensor<2x1280x64xf32> into tensor<2x1280x8x8xf32>
%expanded_1151 = tensor.expand_shape %cst_324 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%2081 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1150, %expanded_1151 : tensor<2x1280x8x8xf32>, tensor<1280x1x1xf16>) outs(%1513 : tensor<2x1280x8x8xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x8x8xf32>
%expanded_1152 = tensor.expand_shape %cst_325 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%2082 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2081, %expanded_1152 : tensor<2x1280x8x8xf32>, tensor<1280x1x1xf16>) outs(%1513 : tensor<2x1280x8x8xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x8x8xf32>
%2083 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%2084 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%2083 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%2085 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2084 : tensor<f16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%2086 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2082 : tensor<2x1280x8x8xf32>) outs(%2085 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%2087 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2086 : tensor<2x1280x8x8xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280x8x8xf16>
%2088 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2087, %2086 : tensor<2x1280x8x8xf16>, tensor<2x1280x8x8xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%padded_1153 = tensor.pad %2088 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x1280x8x8xf16> to tensor<2x1280x10x10xf16>
%2089 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_327 : tensor<1280xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%2090 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_1153, %cst_326 : tensor<2x1280x10x10xf16>, tensor<1280x1280x3x3xf16>) outs(%2089 : tensor<2x1280x8x8xf16>) -> tensor<2x1280x8x8xf16>
%2091 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_329 : tensor<1280xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%2092 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%inserted_slice_1138, %cst_328 : tensor<2x2560x8x8xf16>, tensor<1280x2560x1x1xf16>) outs(%2091 : tensor<2x1280x8x8xf16>) -> tensor<2x1280x8x8xf16>
%2093 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2092, %2090 : tensor<2x1280x8x8xf16>, tensor<2x1280x8x8xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%2094 = linalg.generic {indexing_maps = [#map11, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2093, %cst_3 : tensor<2x1280x8x8xf16>, tensor<f64>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.divf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x1280x8x8xf16>
%inserted_slice_1154 = tensor.insert_slice %2094 into %1945[0, 0, 0, 0] [2, 1280, 8, 8] [1, 1, 1, 1] : tensor<2x1280x8x8xf16> into tensor<2x2560x8x8xf16>
%inserted_slice_1155 = tensor.insert_slice %1489 into %inserted_slice_1154[0, 1280, 0, 0] [2, 1280, 8, 8] [1, 1, 1, 1] : tensor<2x1280x8x8xf16> into tensor<2x2560x8x8xf16>
%collapsed_1156 = tensor.collapse_shape %inserted_slice_1155 [[0], [1], [2, 3]] : tensor<2x2560x8x8xf16> into tensor<2x2560x64xf16>
%expanded_1157 = tensor.expand_shape %collapsed_1156 [[0], [1, 2], [3]] : tensor<2x2560x64xf16> into tensor<2x32x80x64xf16>
%2095 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%2096 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%2095 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%2097 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2096 : tensor<f32>) outs(%1948 : tensor<2x32x80x64xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x80x64xf32>
%2098 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1157 : tensor<2x32x80x64xf16>) outs(%2097 : tensor<2x32x80x64xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x80x64xf32>
%2099 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2098 : tensor<2x32x80x64xf32>) outs(%1951 : tensor<2x32x80x64xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x80x64xf64>
%2100 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%2101 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2099 : tensor<2x32x80x64xf64>) outs(%2100 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2102 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2101 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_710 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2103 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2099, %2102 : tensor<2x32x80x64xf64>, tensor<2x32x1x1xf64>) outs(%1951 : tensor<2x32x80x64xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x80x64xf64>
%2104 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2103 : tensor<2x32x80x64xf64>) outs(%1951 : tensor<2x32x80x64xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x80x64xf64>
%2105 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%2106 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2104 : tensor<2x32x80x64xf64>) outs(%2105 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2107 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2106 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_710 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2108 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2107 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2109 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%2110 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2098 : tensor<2x32x80x64xf32>) outs(%2109 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2111 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2110 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_711 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2112 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2108, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%2113 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2112 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2114 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1157, %2111 : tensor<2x32x80x64xf16>, tensor<2x32x1x1xf32>) outs(%1948 : tensor<2x32x80x64xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x80x64xf32>
%2115 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2114, %2113 : tensor<2x32x80x64xf32>, tensor<2x32x1x1xf32>) outs(%1948 : tensor<2x32x80x64xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x80x64xf32>
%collapsed_1158 = tensor.collapse_shape %2115 [[0], [1, 2], [3]] : tensor<2x32x80x64xf32> into tensor<2x2560x64xf32>
%expanded_1159 = tensor.expand_shape %collapsed_1158 [[0], [1], [2, 3]] : tensor<2x2560x64xf32> into tensor<2x2560x8x8xf32>
%expanded_1160 = tensor.expand_shape %cst_330 [[0, 1, 2]] : tensor<2560xf16> into tensor<2560x1x1xf16>
%2116 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1159, %expanded_1160 : tensor<2x2560x8x8xf32>, tensor<2560x1x1xf16>) outs(%1969 : tensor<2x2560x8x8xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x2560x8x8xf32>
%expanded_1161 = tensor.expand_shape %cst_331 [[0, 1, 2]] : tensor<2560xf16> into tensor<2560x1x1xf16>
%2117 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2116, %expanded_1161 : tensor<2x2560x8x8xf32>, tensor<2560x1x1xf16>) outs(%1969 : tensor<2x2560x8x8xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x2560x8x8xf32>
%2118 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%2119 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%2118 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%2120 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2119 : tensor<f16>) outs(%1945 : tensor<2x2560x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x2560x8x8xf16>
%2121 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2117 : tensor<2x2560x8x8xf32>) outs(%2120 : tensor<2x2560x8x8xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x2560x8x8xf16>
%2122 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2121 : tensor<2x2560x8x8xf16>) outs(%1945 : tensor<2x2560x8x8xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x2560x8x8xf16>
%2123 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2122, %2121 : tensor<2x2560x8x8xf16>, tensor<2x2560x8x8xf16>) outs(%1945 : tensor<2x2560x8x8xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x2560x8x8xf16>
%padded_1162 = tensor.pad %2123 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x2560x8x8xf16> to tensor<2x2560x10x10xf16>
%2124 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_333 : tensor<1280xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%2125 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_1162, %cst_332 : tensor<2x2560x10x10xf16>, tensor<1280x2560x3x3xf16>) outs(%2124 : tensor<2x1280x8x8xf16>) -> tensor<2x1280x8x8xf16>
%2126 = linalg.generic {indexing_maps = [#map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%40 : tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280xf16>
%2127 = linalg.generic {indexing_maps = [#map5, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%2126, %40 : tensor<2x1280xf16>, tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280xf16>
%2128 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_334 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%2129 = linalg.fill ins(%cst_694 : f16) outs(%30 : tensor<2x1280xf16>) -> tensor<2x1280xf16>
%2130 = linalg.matmul ins(%2127, %2128 : tensor<2x1280xf16>, tensor<1280x1280xf16>) outs(%2129 : tensor<2x1280xf16>) -> tensor<2x1280xf16>
%2131 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_335, %2130 : tensor<1280xf16>, tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280xf16>
%expanded_1163 = tensor.expand_shape %2131 [[0], [1, 2, 3]] : tensor<2x1280xf16> into tensor<2x1280x1x1xf16>
%2132 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2125, %expanded_1163 : tensor<2x1280x8x8xf16>, tensor<2x1280x1x1xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%collapsed_1164 = tensor.collapse_shape %2132 [[0], [1], [2, 3]] : tensor<2x1280x8x8xf16> into tensor<2x1280x64xf16>
%expanded_1165 = tensor.expand_shape %collapsed_1164 [[0], [1, 2], [3]] : tensor<2x1280x64xf16> into tensor<2x32x40x64xf16>
%2133 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%2134 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%2133 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%2135 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2134 : tensor<f32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x40x64xf32>
%2136 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1165 : tensor<2x32x40x64xf16>) outs(%2135 : tensor<2x32x40x64xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x64xf32>
%2137 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2136 : tensor<2x32x40x64xf32>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%2138 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%2139 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2137 : tensor<2x32x40x64xf64>) outs(%2138 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2140 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2139 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_713 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2141 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2137, %2140 : tensor<2x32x40x64xf64>, tensor<2x32x1x1xf64>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%2142 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2141 : tensor<2x32x40x64xf64>) outs(%1495 : tensor<2x32x40x64xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x64xf64>
%2143 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%2144 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2142 : tensor<2x32x40x64xf64>) outs(%2143 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2145 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2144 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_713 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2146 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2145 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2147 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%2148 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2136 : tensor<2x32x40x64xf32>) outs(%2147 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2149 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2148 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_714 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2150 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2146, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%2151 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2150 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2152 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1165, %2149 : tensor<2x32x40x64xf16>, tensor<2x32x1x1xf32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x40x64xf32>
%2153 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2152, %2151 : tensor<2x32x40x64xf32>, tensor<2x32x1x1xf32>) outs(%1492 : tensor<2x32x40x64xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x64xf32>
%collapsed_1166 = tensor.collapse_shape %2153 [[0], [1, 2], [3]] : tensor<2x32x40x64xf32> into tensor<2x1280x64xf32>
%expanded_1167 = tensor.expand_shape %collapsed_1166 [[0], [1], [2, 3]] : tensor<2x1280x64xf32> into tensor<2x1280x8x8xf32>
%expanded_1168 = tensor.expand_shape %cst_336 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%2154 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1167, %expanded_1168 : tensor<2x1280x8x8xf32>, tensor<1280x1x1xf16>) outs(%1513 : tensor<2x1280x8x8xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x8x8xf32>
%expanded_1169 = tensor.expand_shape %cst_337 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%2155 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2154, %expanded_1169 : tensor<2x1280x8x8xf32>, tensor<1280x1x1xf16>) outs(%1513 : tensor<2x1280x8x8xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x8x8xf32>
%2156 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%2157 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%2156 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%2158 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2157 : tensor<f16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%2159 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2155 : tensor<2x1280x8x8xf32>) outs(%2158 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%2160 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2159 : tensor<2x1280x8x8xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280x8x8xf16>
%2161 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2160, %2159 : tensor<2x1280x8x8xf16>, tensor<2x1280x8x8xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%padded_1170 = tensor.pad %2161 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x1280x8x8xf16> to tensor<2x1280x10x10xf16>
%2162 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_339 : tensor<1280xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%2163 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_1170, %cst_338 : tensor<2x1280x10x10xf16>, tensor<1280x1280x3x3xf16>) outs(%2162 : tensor<2x1280x8x8xf16>) -> tensor<2x1280x8x8xf16>
%2164 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_341 : tensor<1280xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x8x8xf16>
%2165 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%inserted_slice_1155, %cst_340 : tensor<2x2560x8x8xf16>, tensor<1280x2560x1x1xf16>) outs(%2164 : tensor<2x1280x8x8xf16>) -> tensor<2x1280x8x8xf16>
%2166 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2165, %2163 : tensor<2x1280x8x8xf16>, tensor<2x1280x8x8xf16>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x8x8xf16>
%2167 = linalg.generic {indexing_maps = [#map11, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2166, %cst_3 : tensor<2x1280x8x8xf16>, tensor<f64>) outs(%1487 : tensor<2x1280x8x8xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.divf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x1280x8x8xf16>
%2168 = linalg.generic {indexing_maps = [#map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%out: f16):
%4280 = linalg.index 0 : index
%4281 = linalg.index 1 : index
%4282 = linalg.index 2 : index
%4283 = linalg.index 3 : index
%4284 = arith.floordivsi %4282, %c2 : index
%4285 = arith.floordivsi %4283, %c2 : index
%extracted = tensor.extract %2167[%4280, %4281, %4284, %4285] : tensor<2x1280x8x8xf16>
linalg.yield %extracted : f16
} -> tensor<2x1280x16x16xf16>
%padded_1171 = tensor.pad %2168 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x1280x16x16xf16> to tensor<2x1280x18x18xf16>
%2169 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_343 : tensor<1280xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%2170 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_1171, %cst_342 : tensor<2x1280x18x18xf16>, tensor<1280x1280x3x3xf16>) outs(%2169 : tensor<2x1280x16x16xf16>) -> tensor<2x1280x16x16xf16>
%2171 = tensor.empty() : tensor<2x2560x16x16xf16>
%inserted_slice_1172 = tensor.insert_slice %2170 into %2171[0, 0, 0, 0] [2, 1280, 16, 16] [1, 1, 1, 1] : tensor<2x1280x16x16xf16> into tensor<2x2560x16x16xf16>
%inserted_slice_1173 = tensor.insert_slice %1486 into %inserted_slice_1172[0, 1280, 0, 0] [2, 1280, 16, 16] [1, 1, 1, 1] : tensor<2x1280x16x16xf16> into tensor<2x2560x16x16xf16>
%collapsed_1174 = tensor.collapse_shape %inserted_slice_1173 [[0], [1], [2, 3]] : tensor<2x2560x16x16xf16> into tensor<2x2560x256xf16>
%expanded_1175 = tensor.expand_shape %collapsed_1174 [[0], [1, 2], [3]] : tensor<2x2560x256xf16> into tensor<2x32x80x256xf16>
%2172 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%2173 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%2172 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%2174 = tensor.empty() : tensor<2x32x80x256xf32>
%2175 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2173 : tensor<f32>) outs(%2174 : tensor<2x32x80x256xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x80x256xf32>
%2176 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1175 : tensor<2x32x80x256xf16>) outs(%2175 : tensor<2x32x80x256xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x80x256xf32>
%2177 = tensor.empty() : tensor<2x32x80x256xf64>
%2178 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2176 : tensor<2x32x80x256xf32>) outs(%2177 : tensor<2x32x80x256xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x80x256xf64>
%2179 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%2180 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2178 : tensor<2x32x80x256xf64>) outs(%2179 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2181 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2180 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_707 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2182 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2178, %2181 : tensor<2x32x80x256xf64>, tensor<2x32x1x1xf64>) outs(%2177 : tensor<2x32x80x256xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x80x256xf64>
%2183 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2182 : tensor<2x32x80x256xf64>) outs(%2177 : tensor<2x32x80x256xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x80x256xf64>
%2184 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%2185 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2183 : tensor<2x32x80x256xf64>) outs(%2184 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2186 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2185 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_707 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2187 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2186 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2188 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%2189 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2176 : tensor<2x32x80x256xf32>) outs(%2188 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2190 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2189 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_708 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2191 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2187, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%2192 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2191 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2193 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1175, %2190 : tensor<2x32x80x256xf16>, tensor<2x32x1x1xf32>) outs(%2174 : tensor<2x32x80x256xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x80x256xf32>
%2194 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2193, %2192 : tensor<2x32x80x256xf32>, tensor<2x32x1x1xf32>) outs(%2174 : tensor<2x32x80x256xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x80x256xf32>
%collapsed_1176 = tensor.collapse_shape %2194 [[0], [1, 2], [3]] : tensor<2x32x80x256xf32> into tensor<2x2560x256xf32>
%expanded_1177 = tensor.expand_shape %collapsed_1176 [[0], [1], [2, 3]] : tensor<2x2560x256xf32> into tensor<2x2560x16x16xf32>
%expanded_1178 = tensor.expand_shape %cst_344 [[0, 1, 2]] : tensor<2560xf16> into tensor<2560x1x1xf16>
%2195 = tensor.empty() : tensor<2x2560x16x16xf32>
%2196 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1177, %expanded_1178 : tensor<2x2560x16x16xf32>, tensor<2560x1x1xf16>) outs(%2195 : tensor<2x2560x16x16xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x2560x16x16xf32>
%expanded_1179 = tensor.expand_shape %cst_345 [[0, 1, 2]] : tensor<2560xf16> into tensor<2560x1x1xf16>
%2197 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2196, %expanded_1179 : tensor<2x2560x16x16xf32>, tensor<2560x1x1xf16>) outs(%2195 : tensor<2x2560x16x16xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x2560x16x16xf32>
%2198 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%2199 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%2198 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%2200 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2199 : tensor<f16>) outs(%2171 : tensor<2x2560x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x2560x16x16xf16>
%2201 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2197 : tensor<2x2560x16x16xf32>) outs(%2200 : tensor<2x2560x16x16xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x2560x16x16xf16>
%2202 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2201 : tensor<2x2560x16x16xf16>) outs(%2171 : tensor<2x2560x16x16xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x2560x16x16xf16>
%2203 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2202, %2201 : tensor<2x2560x16x16xf16>, tensor<2x2560x16x16xf16>) outs(%2171 : tensor<2x2560x16x16xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x2560x16x16xf16>
%padded_1180 = tensor.pad %2203 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x2560x16x16xf16> to tensor<2x2560x18x18xf16>
%2204 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_347 : tensor<1280xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%2205 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_1180, %cst_346 : tensor<2x2560x18x18xf16>, tensor<1280x2560x3x3xf16>) outs(%2204 : tensor<2x1280x16x16xf16>) -> tensor<2x1280x16x16xf16>
%2206 = linalg.generic {indexing_maps = [#map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%40 : tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280xf16>
%2207 = linalg.generic {indexing_maps = [#map5, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%2206, %40 : tensor<2x1280xf16>, tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280xf16>
%2208 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_348 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%2209 = linalg.fill ins(%cst_694 : f16) outs(%30 : tensor<2x1280xf16>) -> tensor<2x1280xf16>
%2210 = linalg.matmul ins(%2207, %2208 : tensor<2x1280xf16>, tensor<1280x1280xf16>) outs(%2209 : tensor<2x1280xf16>) -> tensor<2x1280xf16>
%2211 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_349, %2210 : tensor<1280xf16>, tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280xf16>
%expanded_1181 = tensor.expand_shape %2211 [[0], [1, 2, 3]] : tensor<2x1280xf16> into tensor<2x1280x1x1xf16>
%2212 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2205, %expanded_1181 : tensor<2x1280x16x16xf16>, tensor<2x1280x1x1xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x16x16xf16>
%collapsed_1182 = tensor.collapse_shape %2212 [[0], [1], [2, 3]] : tensor<2x1280x16x16xf16> into tensor<2x1280x256xf16>
%expanded_1183 = tensor.expand_shape %collapsed_1182 [[0], [1, 2], [3]] : tensor<2x1280x256xf16> into tensor<2x32x40x256xf16>
%2213 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%2214 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%2213 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%2215 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2214 : tensor<f32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x40x256xf32>
%2216 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1183 : tensor<2x32x40x256xf16>) outs(%2215 : tensor<2x32x40x256xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x256xf32>
%2217 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2216 : tensor<2x32x40x256xf32>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%2218 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%2219 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2217 : tensor<2x32x40x256xf64>) outs(%2218 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2220 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2219 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_705 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2221 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2217, %2220 : tensor<2x32x40x256xf64>, tensor<2x32x1x1xf64>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%2222 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2221 : tensor<2x32x40x256xf64>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%2223 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%2224 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2222 : tensor<2x32x40x256xf64>) outs(%2223 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2225 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2224 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_705 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2226 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2225 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2227 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%2228 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2216 : tensor<2x32x40x256xf32>) outs(%2227 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2229 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2228 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_706 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2230 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2226, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%2231 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2230 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2232 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1183, %2229 : tensor<2x32x40x256xf16>, tensor<2x32x1x1xf32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x40x256xf32>
%2233 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2232, %2231 : tensor<2x32x40x256xf32>, tensor<2x32x1x1xf32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x256xf32>
%collapsed_1184 = tensor.collapse_shape %2233 [[0], [1, 2], [3]] : tensor<2x32x40x256xf32> into tensor<2x1280x256xf32>
%expanded_1185 = tensor.expand_shape %collapsed_1184 [[0], [1], [2, 3]] : tensor<2x1280x256xf32> into tensor<2x1280x16x16xf32>
%expanded_1186 = tensor.expand_shape %cst_350 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%2234 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1185, %expanded_1186 : tensor<2x1280x16x16xf32>, tensor<1280x1x1xf16>) outs(%1073 : tensor<2x1280x16x16xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x16x16xf32>
%expanded_1187 = tensor.expand_shape %cst_351 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%2235 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2234, %expanded_1187 : tensor<2x1280x16x16xf32>, tensor<1280x1x1xf16>) outs(%1073 : tensor<2x1280x16x16xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x16x16xf32>
%2236 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%2237 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%2236 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%2238 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2237 : tensor<f16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%2239 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2235 : tensor<2x1280x16x16xf32>) outs(%2238 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x1280x16x16xf16>
%2240 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2239 : tensor<2x1280x16x16xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280x16x16xf16>
%2241 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2240, %2239 : tensor<2x1280x16x16xf16>, tensor<2x1280x16x16xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x16x16xf16>
%padded_1188 = tensor.pad %2241 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x1280x16x16xf16> to tensor<2x1280x18x18xf16>
%2242 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_353 : tensor<1280xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%2243 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_1188, %cst_352 : tensor<2x1280x18x18xf16>, tensor<1280x1280x3x3xf16>) outs(%2242 : tensor<2x1280x16x16xf16>) -> tensor<2x1280x16x16xf16>
%2244 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_355 : tensor<1280xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%2245 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%inserted_slice_1173, %cst_354 : tensor<2x2560x16x16xf16>, tensor<1280x2560x1x1xf16>) outs(%2244 : tensor<2x1280x16x16xf16>) -> tensor<2x1280x16x16xf16>
%2246 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2245, %2243 : tensor<2x1280x16x16xf16>, tensor<2x1280x16x16xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x16x16xf16>
%2247 = linalg.generic {indexing_maps = [#map11, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2246, %cst_3 : tensor<2x1280x16x16xf16>, tensor<f64>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.divf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x1280x16x16xf16>
%collapsed_1189 = tensor.collapse_shape %2247 [[0], [1], [2, 3]] : tensor<2x1280x16x16xf16> into tensor<2x1280x256xf16>
%expanded_1190 = tensor.expand_shape %collapsed_1189 [[0], [1, 2], [3]] : tensor<2x1280x256xf16> into tensor<2x32x40x256xf16>
%2248 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%2249 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%2248 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%2250 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2249 : tensor<f32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x40x256xf32>
%2251 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1190 : tensor<2x32x40x256xf16>) outs(%2250 : tensor<2x32x40x256xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x256xf32>
%2252 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2251 : tensor<2x32x40x256xf32>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%2253 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%2254 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2252 : tensor<2x32x40x256xf64>) outs(%2253 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2255 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2254 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_705 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2256 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2252, %2255 : tensor<2x32x40x256xf64>, tensor<2x32x1x1xf64>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%2257 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2256 : tensor<2x32x40x256xf64>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%2258 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%2259 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2257 : tensor<2x32x40x256xf64>) outs(%2258 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2260 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2259 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_705 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2261 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2260 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2262 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%2263 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2251 : tensor<2x32x40x256xf32>) outs(%2262 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2264 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2263 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_706 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2265 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2261, %cst_2 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%2266 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2265 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2267 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1190, %2264 : tensor<2x32x40x256xf16>, tensor<2x32x1x1xf32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x40x256xf32>
%2268 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2267, %2266 : tensor<2x32x40x256xf32>, tensor<2x32x1x1xf32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x256xf32>
%collapsed_1191 = tensor.collapse_shape %2268 [[0], [1, 2], [3]] : tensor<2x32x40x256xf32> into tensor<2x1280x256xf32>
%expanded_1192 = tensor.expand_shape %collapsed_1191 [[0], [1], [2, 3]] : tensor<2x1280x256xf32> into tensor<2x1280x16x16xf32>
%expanded_1193 = tensor.expand_shape %cst_356 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%2269 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1192, %expanded_1193 : tensor<2x1280x16x16xf32>, tensor<1280x1x1xf16>) outs(%1073 : tensor<2x1280x16x16xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x16x16xf32>
%expanded_1194 = tensor.expand_shape %cst_357 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%2270 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2269, %expanded_1194 : tensor<2x1280x16x16xf32>, tensor<1280x1x1xf16>) outs(%1073 : tensor<2x1280x16x16xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x16x16xf32>
%2271 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%2272 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%2271 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%2273 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2272 : tensor<f16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%2274 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2270 : tensor<2x1280x16x16xf32>) outs(%2273 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x1280x16x16xf16>
%2275 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_359 : tensor<1280xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%2276 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%2274, %cst_358 : tensor<2x1280x16x16xf16>, tensor<1280x1280x1x1xf16>) outs(%2275 : tensor<2x1280x16x16xf16>) -> tensor<2x1280x16x16xf16>
%2277 = linalg.generic {indexing_maps = [#map11, #map15], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2276 : tensor<2x1280x16x16xf16>) outs(%1117 : tensor<2x16x16x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x16x16x1280xf16>
%collapsed_1195 = tensor.collapse_shape %2277 [[0], [1, 2], [3]] : tensor<2x16x16x1280xf16> into tensor<2x256x1280xf16>
%2278 = linalg.fill ins(%cst_694 : f16) outs(%1119 : tensor<2x256x1xf16>) -> tensor<2x256x1xf16>
%2279 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%collapsed_1195 : tensor<2x256x1280xf16>) outs(%2278 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2280 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2279 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2281 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2280 : tensor<2x256x1xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x1280xf16>
%2282 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%collapsed_1195, %2281 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2283 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2282 : tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.mulf %in, %in : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2284 = linalg.fill ins(%cst_694 : f16) outs(%1119 : tensor<2x256x1xf16>) -> tensor<2x256x1xf16>
%2285 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%2283 : tensor<2x256x1280xf16>) outs(%2284 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2286 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2285 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2287 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2286 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.truncf %cst_700 : f64 to f16
%4281 = arith.addf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x256x1xf16>
%2288 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2287 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.rsqrt %in : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2289 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2288 : tensor<2x256x1xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x1280xf16>
%2290 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2282, %2289 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2291 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2290, %cst_360 : tensor<2x256x1280xf16>, tensor<1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2292 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2291, %cst_361 : tensor<2x256x1280xf16>, tensor<1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2293 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_362 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%collapsed_1196 = tensor.collapse_shape %2292 [[0, 1], [2]] : tensor<2x256x1280xf16> into tensor<512x1280xf16>
%2294 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2295 = linalg.matmul ins(%collapsed_1196, %2293 : tensor<512x1280xf16>, tensor<1280x1280xf16>) outs(%2294 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2296 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_363 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%2297 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2298 = linalg.matmul ins(%collapsed_1196, %2296 : tensor<512x1280xf16>, tensor<1280x1280xf16>) outs(%2297 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2299 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_364 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%2300 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2301 = linalg.matmul ins(%collapsed_1196, %2299 : tensor<512x1280xf16>, tensor<1280x1280xf16>) outs(%2300 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%expanded_1197 = tensor.expand_shape %2295 [[0, 1], [2, 3]] : tensor<512x1280xf16> into tensor<2x256x8x160xf16>
%2302 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1197 : tensor<2x256x8x160xf16>) outs(%1146 : tensor<2x8x256x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x256x160xf16>
%collapsed_1198 = tensor.collapse_shape %2302 [[0, 1], [2], [3]] : tensor<2x8x256x160xf16> into tensor<16x256x160xf16>
%expanded_1199 = tensor.expand_shape %2298 [[0, 1], [2, 3]] : tensor<512x1280xf16> into tensor<2x256x8x160xf16>
%2303 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1199 : tensor<2x256x8x160xf16>) outs(%1146 : tensor<2x8x256x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x256x160xf16>
%collapsed_1200 = tensor.collapse_shape %2303 [[0, 1], [2], [3]] : tensor<2x8x256x160xf16> into tensor<16x256x160xf16>
%expanded_1201 = tensor.expand_shape %2301 [[0, 1], [2, 3]] : tensor<512x1280xf16> into tensor<2x256x8x160xf16>
%2304 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1201 : tensor<2x256x8x160xf16>) outs(%1146 : tensor<2x8x256x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x256x160xf16>
%collapsed_1202 = tensor.collapse_shape %2304 [[0, 1], [2], [3]] : tensor<2x8x256x160xf16> into tensor<16x256x160xf16>
%2305 = linalg.generic {indexing_maps = [#map16, #map20], iterator_types = ["parallel", "parallel", "parallel"]} ins(%collapsed_1200 : tensor<16x256x160xf16>) outs(%1150 : tensor<16x160x256xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<16x160x256xf16>
%2306 = linalg.fill ins(%cst_694 : f16) outs(%1152 : tensor<16x256x256xf16>) -> tensor<16x256x256xf16>
%2307 = linalg.batch_matmul ins(%collapsed_1198, %2305 : tensor<16x256x160xf16>, tensor<16x160x256xf16>) outs(%2306 : tensor<16x256x256xf16>) -> tensor<16x256x256xf16>
%2308 = linalg.generic {indexing_maps = [#map16, #map21, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2307, %cst : tensor<16x256x256xf16>, tensor<f64>) outs(%1152 : tensor<16x256x256xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.mulf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<16x256x256xf16>
%2309 = linalg.fill ins(%c0_i64 : i64) outs(%1156 : tensor<16x256x1xi64>) -> tensor<16x256x1xi64>
%2310 = linalg.fill ins(%cst_696 : f16) outs(%1158 : tensor<16x256x1xf16>) -> tensor<16x256x1xf16>
%2311:2 = linalg.generic {indexing_maps = [#map16, #map17, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%2308 : tensor<16x256x256xf16>) outs(%2310, %2309 : tensor<16x256x1xf16>, tensor<16x256x1xi64>) {
^bb0(%in: f16, %out: f16, %out_1640: i64):
%4280 = linalg.index 2 : index
%4281 = arith.index_cast %4280 : index to i64
%4282 = arith.maxf %in, %out : f16
%4283 = arith.cmpf ogt, %in, %out : f16
%4284 = arith.select %4283, %4281, %out_1640 : i64
linalg.yield %4282, %4284 : f16, i64
} -> (tensor<16x256x1xf16>, tensor<16x256x1xi64>)
%2312 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2308, %2311#0 : tensor<16x256x256xf16>, tensor<16x256x1xf16>) outs(%1152 : tensor<16x256x256xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x256x256xf16>
%2313 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2312 : tensor<16x256x256xf16>) outs(%1152 : tensor<16x256x256xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.exp %in : f16
linalg.yield %4280 : f16
} -> tensor<16x256x256xf16>
%2314 = linalg.fill ins(%cst_694 : f16) outs(%1158 : tensor<16x256x1xf16>) -> tensor<16x256x1xf16>
%2315 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%2313 : tensor<16x256x256xf16>) outs(%2314 : tensor<16x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<16x256x1xf16>
%2316 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2313, %2315 : tensor<16x256x256xf16>, tensor<16x256x1xf16>) outs(%1152 : tensor<16x256x256xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.divf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x256x256xf16>
%2317 = linalg.fill ins(%cst_694 : f16) outs(%1166 : tensor<16x256x160xf16>) -> tensor<16x256x160xf16>
%2318 = linalg.batch_matmul ins(%2316, %collapsed_1202 : tensor<16x256x256xf16>, tensor<16x256x160xf16>) outs(%2317 : tensor<16x256x160xf16>) -> tensor<16x256x160xf16>
%expanded_1203 = tensor.expand_shape %2318 [[0, 1], [2], [3]] : tensor<16x256x160xf16> into tensor<2x8x256x160xf16>
%2319 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1203 : tensor<2x8x256x160xf16>) outs(%1169 : tensor<2x256x8x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x8x160xf16>
%2320 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_365 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%collapsed_1204 = tensor.collapse_shape %2319 [[0, 1], [2, 3]] : tensor<2x256x8x160xf16> into tensor<512x1280xf16>
%2321 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2322 = linalg.matmul ins(%collapsed_1204, %2320 : tensor<512x1280xf16>, tensor<1280x1280xf16>) outs(%2321 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2323 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_366, %2322 : tensor<1280xf16>, tensor<512x1280xf16>) outs(%1137 : tensor<512x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<512x1280xf16>
%expanded_1205 = tensor.expand_shape %2323 [[0, 1], [2]] : tensor<512x1280xf16> into tensor<2x256x1280xf16>
%2324 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%expanded_1205, %collapsed_1195 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2325 = linalg.fill ins(%cst_694 : f16) outs(%1119 : tensor<2x256x1xf16>) -> tensor<2x256x1xf16>
%2326 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%2324 : tensor<2x256x1280xf16>) outs(%2325 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2327 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2326 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2328 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2327 : tensor<2x256x1xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x1280xf16>
%2329 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2324, %2328 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2330 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2329 : tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.mulf %in, %in : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2331 = linalg.fill ins(%cst_694 : f16) outs(%1119 : tensor<2x256x1xf16>) -> tensor<2x256x1xf16>
%2332 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%2330 : tensor<2x256x1280xf16>) outs(%2331 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2333 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2332 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2334 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2333 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.truncf %cst_700 : f64 to f16
%4281 = arith.addf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x256x1xf16>
%2335 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2334 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.rsqrt %in : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2336 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2335 : tensor<2x256x1xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x1280xf16>
%2337 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2329, %2336 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2338 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2337, %cst_367 : tensor<2x256x1280xf16>, tensor<1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2339 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2338, %cst_368 : tensor<2x256x1280xf16>, tensor<1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2340 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_369 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%collapsed_1206 = tensor.collapse_shape %2339 [[0, 1], [2]] : tensor<2x256x1280xf16> into tensor<512x1280xf16>
%2341 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2342 = linalg.matmul ins(%collapsed_1206, %2340 : tensor<512x1280xf16>, tensor<1280x1280xf16>) outs(%2341 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2343 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_370 : tensor<1280x768xf16>) outs(%1194 : tensor<768x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<768x1280xf16>
%2344 = linalg.fill ins(%cst_694 : f16) outs(%1196 : tensor<154x1280xf16>) -> tensor<154x1280xf16>
%2345 = linalg.matmul ins(%collapsed_761, %2343 : tensor<154x768xf16>, tensor<768x1280xf16>) outs(%2344 : tensor<154x1280xf16>) -> tensor<154x1280xf16>
%2346 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_371 : tensor<1280x768xf16>) outs(%1194 : tensor<768x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<768x1280xf16>
%2347 = linalg.fill ins(%cst_694 : f16) outs(%1196 : tensor<154x1280xf16>) -> tensor<154x1280xf16>
%2348 = linalg.matmul ins(%collapsed_761, %2346 : tensor<154x768xf16>, tensor<768x1280xf16>) outs(%2347 : tensor<154x1280xf16>) -> tensor<154x1280xf16>
%expanded_1207 = tensor.expand_shape %2342 [[0, 1], [2, 3]] : tensor<512x1280xf16> into tensor<2x256x8x160xf16>
%2349 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1207 : tensor<2x256x8x160xf16>) outs(%1146 : tensor<2x8x256x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x256x160xf16>
%collapsed_1208 = tensor.collapse_shape %2349 [[0, 1], [2], [3]] : tensor<2x8x256x160xf16> into tensor<16x256x160xf16>
%expanded_1209 = tensor.expand_shape %2345 [[0, 1], [2, 3]] : tensor<154x1280xf16> into tensor<2x77x8x160xf16>
%2350 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1209 : tensor<2x77x8x160xf16>) outs(%1203 : tensor<2x8x77x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x77x160xf16>
%collapsed_1210 = tensor.collapse_shape %2350 [[0, 1], [2], [3]] : tensor<2x8x77x160xf16> into tensor<16x77x160xf16>
%expanded_1211 = tensor.expand_shape %2348 [[0, 1], [2, 3]] : tensor<154x1280xf16> into tensor<2x77x8x160xf16>
%2351 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1211 : tensor<2x77x8x160xf16>) outs(%1203 : tensor<2x8x77x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x77x160xf16>
%collapsed_1212 = tensor.collapse_shape %2351 [[0, 1], [2], [3]] : tensor<2x8x77x160xf16> into tensor<16x77x160xf16>
%2352 = linalg.generic {indexing_maps = [#map16, #map20], iterator_types = ["parallel", "parallel", "parallel"]} ins(%collapsed_1210 : tensor<16x77x160xf16>) outs(%1206 : tensor<16x160x77xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<16x160x77xf16>
%2353 = linalg.fill ins(%cst_694 : f16) outs(%1208 : tensor<16x256x77xf16>) -> tensor<16x256x77xf16>
%2354 = linalg.batch_matmul ins(%collapsed_1208, %2352 : tensor<16x256x160xf16>, tensor<16x160x77xf16>) outs(%2353 : tensor<16x256x77xf16>) -> tensor<16x256x77xf16>
%2355 = linalg.generic {indexing_maps = [#map16, #map21, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2354, %cst : tensor<16x256x77xf16>, tensor<f64>) outs(%1208 : tensor<16x256x77xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.mulf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<16x256x77xf16>
%2356 = linalg.fill ins(%c0_i64 : i64) outs(%1156 : tensor<16x256x1xi64>) -> tensor<16x256x1xi64>
%2357 = linalg.fill ins(%cst_696 : f16) outs(%1158 : tensor<16x256x1xf16>) -> tensor<16x256x1xf16>
%2358:2 = linalg.generic {indexing_maps = [#map16, #map17, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%2355 : tensor<16x256x77xf16>) outs(%2357, %2356 : tensor<16x256x1xf16>, tensor<16x256x1xi64>) {
^bb0(%in: f16, %out: f16, %out_1640: i64):
%4280 = linalg.index 2 : index
%4281 = arith.index_cast %4280 : index to i64
%4282 = arith.maxf %in, %out : f16
%4283 = arith.cmpf ogt, %in, %out : f16
%4284 = arith.select %4283, %4281, %out_1640 : i64
linalg.yield %4282, %4284 : f16, i64
} -> (tensor<16x256x1xf16>, tensor<16x256x1xi64>)
%2359 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2355, %2358#0 : tensor<16x256x77xf16>, tensor<16x256x1xf16>) outs(%1208 : tensor<16x256x77xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x256x77xf16>
%2360 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2359 : tensor<16x256x77xf16>) outs(%1208 : tensor<16x256x77xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.exp %in : f16
linalg.yield %4280 : f16
} -> tensor<16x256x77xf16>
%2361 = linalg.fill ins(%cst_694 : f16) outs(%1158 : tensor<16x256x1xf16>) -> tensor<16x256x1xf16>
%2362 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%2360 : tensor<16x256x77xf16>) outs(%2361 : tensor<16x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<16x256x1xf16>
%2363 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2360, %2362 : tensor<16x256x77xf16>, tensor<16x256x1xf16>) outs(%1208 : tensor<16x256x77xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.divf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x256x77xf16>
%2364 = linalg.fill ins(%cst_694 : f16) outs(%1166 : tensor<16x256x160xf16>) -> tensor<16x256x160xf16>
%2365 = linalg.batch_matmul ins(%2363, %collapsed_1212 : tensor<16x256x77xf16>, tensor<16x77x160xf16>) outs(%2364 : tensor<16x256x160xf16>) -> tensor<16x256x160xf16>
%expanded_1213 = tensor.expand_shape %2365 [[0, 1], [2], [3]] : tensor<16x256x160xf16> into tensor<2x8x256x160xf16>
%2366 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1213 : tensor<2x8x256x160xf16>) outs(%1169 : tensor<2x256x8x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x8x160xf16>
%2367 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_372 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%collapsed_1214 = tensor.collapse_shape %2366 [[0, 1], [2, 3]] : tensor<2x256x8x160xf16> into tensor<512x1280xf16>
%2368 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2369 = linalg.matmul ins(%collapsed_1214, %2367 : tensor<512x1280xf16>, tensor<1280x1280xf16>) outs(%2368 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2370 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_373, %2369 : tensor<1280xf16>, tensor<512x1280xf16>) outs(%1137 : tensor<512x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<512x1280xf16>
%expanded_1215 = tensor.expand_shape %2370 [[0, 1], [2]] : tensor<512x1280xf16> into tensor<2x256x1280xf16>
%2371 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%expanded_1215, %2324 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2372 = linalg.fill ins(%cst_694 : f16) outs(%1119 : tensor<2x256x1xf16>) -> tensor<2x256x1xf16>
%2373 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%2371 : tensor<2x256x1280xf16>) outs(%2372 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2374 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2373 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2375 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2374 : tensor<2x256x1xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x1280xf16>
%2376 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2371, %2375 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2377 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2376 : tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.mulf %in, %in : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2378 = linalg.fill ins(%cst_694 : f16) outs(%1119 : tensor<2x256x1xf16>) -> tensor<2x256x1xf16>
%2379 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%2377 : tensor<2x256x1280xf16>) outs(%2378 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2380 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2379 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2381 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2380 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.truncf %cst_700 : f64 to f16
%4281 = arith.addf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x256x1xf16>
%2382 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2381 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.rsqrt %in : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2383 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2382 : tensor<2x256x1xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x1280xf16>
%2384 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2376, %2383 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2385 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2384, %cst_374 : tensor<2x256x1280xf16>, tensor<1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2386 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2385, %cst_375 : tensor<2x256x1280xf16>, tensor<1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2387 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_376 : tensor<10240x1280xf16>) outs(%1243 : tensor<1280x10240xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x10240xf16>
%collapsed_1216 = tensor.collapse_shape %2386 [[0, 1], [2]] : tensor<2x256x1280xf16> into tensor<512x1280xf16>
%2388 = linalg.fill ins(%cst_694 : f16) outs(%1245 : tensor<512x10240xf16>) -> tensor<512x10240xf16>
%2389 = linalg.matmul ins(%collapsed_1216, %2387 : tensor<512x1280xf16>, tensor<1280x10240xf16>) outs(%2388 : tensor<512x10240xf16>) -> tensor<512x10240xf16>
%2390 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_377, %2389 : tensor<10240xf16>, tensor<512x10240xf16>) outs(%1245 : tensor<512x10240xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<512x10240xf16>
%expanded_1217 = tensor.expand_shape %2390 [[0, 1], [2]] : tensor<512x10240xf16> into tensor<2x256x10240xf16>
%extracted_slice_1218 = tensor.extract_slice %expanded_1217[0, 0, 0] [2, 256, 5120] [1, 1, 1] : tensor<2x256x10240xf16> to tensor<2x256x5120xf16>
%extracted_slice_1219 = tensor.extract_slice %expanded_1217[0, 0, 5120] [2, 256, 5120] [1, 1, 1] : tensor<2x256x10240xf16> to tensor<2x256x5120xf16>
%2391 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%extracted_slice_1219 : tensor<2x256x5120xf16>) outs(%1249 : tensor<2x256x5120xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.sqrt %cst_697 : f16
%4281 = arith.divf %in, %4280 : f16
%4282 = math.erf %4281 : f16
%4283 = arith.addf %4282, %cst_695 : f16
%4284 = arith.mulf %4283, %cst_698 : f16
%4285 = arith.mulf %in, %4284 : f16
linalg.yield %4285 : f16
} -> tensor<2x256x5120xf16>
%2392 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%extracted_slice_1218, %2391 : tensor<2x256x5120xf16>, tensor<2x256x5120xf16>) outs(%1249 : tensor<2x256x5120xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x5120xf16>
%2393 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_378 : tensor<1280x5120xf16>) outs(%1252 : tensor<5120x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<5120x1280xf16>
%collapsed_1220 = tensor.collapse_shape %2392 [[0, 1], [2]] : tensor<2x256x5120xf16> into tensor<512x5120xf16>
%2394 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2395 = linalg.matmul ins(%collapsed_1220, %2393 : tensor<512x5120xf16>, tensor<5120x1280xf16>) outs(%2394 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2396 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_379, %2395 : tensor<1280xf16>, tensor<512x1280xf16>) outs(%1137 : tensor<512x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<512x1280xf16>
%expanded_1221 = tensor.expand_shape %2396 [[0, 1], [2]] : tensor<512x1280xf16> into tensor<2x256x1280xf16>
%2397 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%expanded_1221, %2371 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%expanded_1222 = tensor.expand_shape %2397 [[0], [1, 2], [3]] : tensor<2x256x1280xf16> into tensor<2x16x16x1280xf16>
%2398 = linalg.generic {indexing_maps = [#map11, #map22], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1222 : tensor<2x16x16x1280xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%2399 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_381 : tensor<1280xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%2400 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%2398, %cst_380 : tensor<2x1280x16x16xf16>, tensor<1280x1280x1x1xf16>) outs(%2399 : tensor<2x1280x16x16xf16>) -> tensor<2x1280x16x16xf16>
%2401 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2400, %2247 : tensor<2x1280x16x16xf16>, tensor<2x1280x16x16xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x16x16xf16>
%inserted_slice_1223 = tensor.insert_slice %2401 into %2171[0, 0, 0, 0] [2, 1280, 16, 16] [1, 1, 1, 1] : tensor<2x1280x16x16xf16> into tensor<2x2560x16x16xf16>
%inserted_slice_1224 = tensor.insert_slice %1261 into %inserted_slice_1223[0, 1280, 0, 0] [2, 1280, 16, 16] [1, 1, 1, 1] : tensor<2x1280x16x16xf16> into tensor<2x2560x16x16xf16>
%collapsed_1225 = tensor.collapse_shape %inserted_slice_1224 [[0], [1], [2, 3]] : tensor<2x2560x16x16xf16> into tensor<2x2560x256xf16>
%expanded_1226 = tensor.expand_shape %collapsed_1225 [[0], [1, 2], [3]] : tensor<2x2560x256xf16> into tensor<2x32x80x256xf16>
%2402 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%2403 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%2402 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%2404 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2403 : tensor<f32>) outs(%2174 : tensor<2x32x80x256xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x80x256xf32>
%2405 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1226 : tensor<2x32x80x256xf16>) outs(%2404 : tensor<2x32x80x256xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x80x256xf32>
%2406 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2405 : tensor<2x32x80x256xf32>) outs(%2177 : tensor<2x32x80x256xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x80x256xf64>
%2407 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%2408 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2406 : tensor<2x32x80x256xf64>) outs(%2407 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2409 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2408 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_707 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2410 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2406, %2409 : tensor<2x32x80x256xf64>, tensor<2x32x1x1xf64>) outs(%2177 : tensor<2x32x80x256xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x80x256xf64>
%2411 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2410 : tensor<2x32x80x256xf64>) outs(%2177 : tensor<2x32x80x256xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x80x256xf64>
%2412 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%2413 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2411 : tensor<2x32x80x256xf64>) outs(%2412 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2414 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2413 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_707 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2415 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2414 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2416 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%2417 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2405 : tensor<2x32x80x256xf32>) outs(%2416 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2418 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2417 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_708 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2419 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2415, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%2420 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2419 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2421 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1226, %2418 : tensor<2x32x80x256xf16>, tensor<2x32x1x1xf32>) outs(%2174 : tensor<2x32x80x256xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x80x256xf32>
%2422 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2421, %2420 : tensor<2x32x80x256xf32>, tensor<2x32x1x1xf32>) outs(%2174 : tensor<2x32x80x256xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x80x256xf32>
%collapsed_1227 = tensor.collapse_shape %2422 [[0], [1, 2], [3]] : tensor<2x32x80x256xf32> into tensor<2x2560x256xf32>
%expanded_1228 = tensor.expand_shape %collapsed_1227 [[0], [1], [2, 3]] : tensor<2x2560x256xf32> into tensor<2x2560x16x16xf32>
%expanded_1229 = tensor.expand_shape %cst_382 [[0, 1, 2]] : tensor<2560xf16> into tensor<2560x1x1xf16>
%2423 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1228, %expanded_1229 : tensor<2x2560x16x16xf32>, tensor<2560x1x1xf16>) outs(%2195 : tensor<2x2560x16x16xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x2560x16x16xf32>
%expanded_1230 = tensor.expand_shape %cst_383 [[0, 1, 2]] : tensor<2560xf16> into tensor<2560x1x1xf16>
%2424 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2423, %expanded_1230 : tensor<2x2560x16x16xf32>, tensor<2560x1x1xf16>) outs(%2195 : tensor<2x2560x16x16xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x2560x16x16xf32>
%2425 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%2426 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%2425 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%2427 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2426 : tensor<f16>) outs(%2171 : tensor<2x2560x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x2560x16x16xf16>
%2428 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2424 : tensor<2x2560x16x16xf32>) outs(%2427 : tensor<2x2560x16x16xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x2560x16x16xf16>
%2429 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2428 : tensor<2x2560x16x16xf16>) outs(%2171 : tensor<2x2560x16x16xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x2560x16x16xf16>
%2430 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2429, %2428 : tensor<2x2560x16x16xf16>, tensor<2x2560x16x16xf16>) outs(%2171 : tensor<2x2560x16x16xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x2560x16x16xf16>
%padded_1231 = tensor.pad %2430 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x2560x16x16xf16> to tensor<2x2560x18x18xf16>
%2431 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_385 : tensor<1280xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%2432 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_1231, %cst_384 : tensor<2x2560x18x18xf16>, tensor<1280x2560x3x3xf16>) outs(%2431 : tensor<2x1280x16x16xf16>) -> tensor<2x1280x16x16xf16>
%2433 = linalg.generic {indexing_maps = [#map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%40 : tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280xf16>
%2434 = linalg.generic {indexing_maps = [#map5, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%2433, %40 : tensor<2x1280xf16>, tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280xf16>
%2435 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_386 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%2436 = linalg.fill ins(%cst_694 : f16) outs(%30 : tensor<2x1280xf16>) -> tensor<2x1280xf16>
%2437 = linalg.matmul ins(%2434, %2435 : tensor<2x1280xf16>, tensor<1280x1280xf16>) outs(%2436 : tensor<2x1280xf16>) -> tensor<2x1280xf16>
%2438 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_387, %2437 : tensor<1280xf16>, tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280xf16>
%expanded_1232 = tensor.expand_shape %2438 [[0], [1, 2, 3]] : tensor<2x1280xf16> into tensor<2x1280x1x1xf16>
%2439 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2432, %expanded_1232 : tensor<2x1280x16x16xf16>, tensor<2x1280x1x1xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x16x16xf16>
%collapsed_1233 = tensor.collapse_shape %2439 [[0], [1], [2, 3]] : tensor<2x1280x16x16xf16> into tensor<2x1280x256xf16>
%expanded_1234 = tensor.expand_shape %collapsed_1233 [[0], [1, 2], [3]] : tensor<2x1280x256xf16> into tensor<2x32x40x256xf16>
%2440 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%2441 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%2440 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%2442 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2441 : tensor<f32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x40x256xf32>
%2443 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1234 : tensor<2x32x40x256xf16>) outs(%2442 : tensor<2x32x40x256xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x256xf32>
%2444 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2443 : tensor<2x32x40x256xf32>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%2445 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%2446 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2444 : tensor<2x32x40x256xf64>) outs(%2445 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2447 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2446 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_705 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2448 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2444, %2447 : tensor<2x32x40x256xf64>, tensor<2x32x1x1xf64>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%2449 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2448 : tensor<2x32x40x256xf64>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%2450 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%2451 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2449 : tensor<2x32x40x256xf64>) outs(%2450 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2452 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2451 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_705 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2453 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2452 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2454 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%2455 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2443 : tensor<2x32x40x256xf32>) outs(%2454 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2456 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2455 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_706 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2457 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2453, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%2458 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2457 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2459 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1234, %2456 : tensor<2x32x40x256xf16>, tensor<2x32x1x1xf32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x40x256xf32>
%2460 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2459, %2458 : tensor<2x32x40x256xf32>, tensor<2x32x1x1xf32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x256xf32>
%collapsed_1235 = tensor.collapse_shape %2460 [[0], [1, 2], [3]] : tensor<2x32x40x256xf32> into tensor<2x1280x256xf32>
%expanded_1236 = tensor.expand_shape %collapsed_1235 [[0], [1], [2, 3]] : tensor<2x1280x256xf32> into tensor<2x1280x16x16xf32>
%expanded_1237 = tensor.expand_shape %cst_388 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%2461 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1236, %expanded_1237 : tensor<2x1280x16x16xf32>, tensor<1280x1x1xf16>) outs(%1073 : tensor<2x1280x16x16xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x16x16xf32>
%expanded_1238 = tensor.expand_shape %cst_389 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%2462 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2461, %expanded_1238 : tensor<2x1280x16x16xf32>, tensor<1280x1x1xf16>) outs(%1073 : tensor<2x1280x16x16xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x16x16xf32>
%2463 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%2464 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%2463 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%2465 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2464 : tensor<f16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%2466 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2462 : tensor<2x1280x16x16xf32>) outs(%2465 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x1280x16x16xf16>
%2467 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2466 : tensor<2x1280x16x16xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280x16x16xf16>
%2468 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2467, %2466 : tensor<2x1280x16x16xf16>, tensor<2x1280x16x16xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x16x16xf16>
%padded_1239 = tensor.pad %2468 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x1280x16x16xf16> to tensor<2x1280x18x18xf16>
%2469 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_391 : tensor<1280xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%2470 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_1239, %cst_390 : tensor<2x1280x18x18xf16>, tensor<1280x1280x3x3xf16>) outs(%2469 : tensor<2x1280x16x16xf16>) -> tensor<2x1280x16x16xf16>
%2471 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_393 : tensor<1280xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%2472 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%inserted_slice_1224, %cst_392 : tensor<2x2560x16x16xf16>, tensor<1280x2560x1x1xf16>) outs(%2471 : tensor<2x1280x16x16xf16>) -> tensor<2x1280x16x16xf16>
%2473 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2472, %2470 : tensor<2x1280x16x16xf16>, tensor<2x1280x16x16xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x16x16xf16>
%2474 = linalg.generic {indexing_maps = [#map11, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2473, %cst_3 : tensor<2x1280x16x16xf16>, tensor<f64>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.divf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x1280x16x16xf16>
%collapsed_1240 = tensor.collapse_shape %2474 [[0], [1], [2, 3]] : tensor<2x1280x16x16xf16> into tensor<2x1280x256xf16>
%expanded_1241 = tensor.expand_shape %collapsed_1240 [[0], [1, 2], [3]] : tensor<2x1280x256xf16> into tensor<2x32x40x256xf16>
%2475 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%2476 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%2475 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%2477 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2476 : tensor<f32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x40x256xf32>
%2478 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1241 : tensor<2x32x40x256xf16>) outs(%2477 : tensor<2x32x40x256xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x256xf32>
%2479 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2478 : tensor<2x32x40x256xf32>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%2480 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%2481 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2479 : tensor<2x32x40x256xf64>) outs(%2480 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2482 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2481 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_705 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2483 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2479, %2482 : tensor<2x32x40x256xf64>, tensor<2x32x1x1xf64>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%2484 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2483 : tensor<2x32x40x256xf64>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%2485 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%2486 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2484 : tensor<2x32x40x256xf64>) outs(%2485 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2487 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2486 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_705 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2488 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2487 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2489 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%2490 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2478 : tensor<2x32x40x256xf32>) outs(%2489 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2491 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2490 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_706 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2492 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2488, %cst_2 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%2493 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2492 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2494 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1241, %2491 : tensor<2x32x40x256xf16>, tensor<2x32x1x1xf32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x40x256xf32>
%2495 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2494, %2493 : tensor<2x32x40x256xf32>, tensor<2x32x1x1xf32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x256xf32>
%collapsed_1242 = tensor.collapse_shape %2495 [[0], [1, 2], [3]] : tensor<2x32x40x256xf32> into tensor<2x1280x256xf32>
%expanded_1243 = tensor.expand_shape %collapsed_1242 [[0], [1], [2, 3]] : tensor<2x1280x256xf32> into tensor<2x1280x16x16xf32>
%expanded_1244 = tensor.expand_shape %cst_394 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%2496 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1243, %expanded_1244 : tensor<2x1280x16x16xf32>, tensor<1280x1x1xf16>) outs(%1073 : tensor<2x1280x16x16xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x16x16xf32>
%expanded_1245 = tensor.expand_shape %cst_395 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%2497 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2496, %expanded_1245 : tensor<2x1280x16x16xf32>, tensor<1280x1x1xf16>) outs(%1073 : tensor<2x1280x16x16xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x16x16xf32>
%2498 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%2499 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%2498 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%2500 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2499 : tensor<f16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%2501 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2497 : tensor<2x1280x16x16xf32>) outs(%2500 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x1280x16x16xf16>
%2502 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_397 : tensor<1280xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%2503 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%2501, %cst_396 : tensor<2x1280x16x16xf16>, tensor<1280x1280x1x1xf16>) outs(%2502 : tensor<2x1280x16x16xf16>) -> tensor<2x1280x16x16xf16>
%2504 = linalg.generic {indexing_maps = [#map11, #map15], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2503 : tensor<2x1280x16x16xf16>) outs(%1117 : tensor<2x16x16x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x16x16x1280xf16>
%collapsed_1246 = tensor.collapse_shape %2504 [[0], [1, 2], [3]] : tensor<2x16x16x1280xf16> into tensor<2x256x1280xf16>
%2505 = linalg.fill ins(%cst_694 : f16) outs(%1119 : tensor<2x256x1xf16>) -> tensor<2x256x1xf16>
%2506 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%collapsed_1246 : tensor<2x256x1280xf16>) outs(%2505 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2507 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2506 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2508 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2507 : tensor<2x256x1xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x1280xf16>
%2509 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%collapsed_1246, %2508 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2510 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2509 : tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.mulf %in, %in : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2511 = linalg.fill ins(%cst_694 : f16) outs(%1119 : tensor<2x256x1xf16>) -> tensor<2x256x1xf16>
%2512 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%2510 : tensor<2x256x1280xf16>) outs(%2511 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2513 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2512 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2514 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2513 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.truncf %cst_700 : f64 to f16
%4281 = arith.addf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x256x1xf16>
%2515 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2514 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.rsqrt %in : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2516 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2515 : tensor<2x256x1xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x1280xf16>
%2517 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2509, %2516 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2518 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2517, %cst_398 : tensor<2x256x1280xf16>, tensor<1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2519 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2518, %cst_399 : tensor<2x256x1280xf16>, tensor<1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2520 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_400 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%collapsed_1247 = tensor.collapse_shape %2519 [[0, 1], [2]] : tensor<2x256x1280xf16> into tensor<512x1280xf16>
%2521 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2522 = linalg.matmul ins(%collapsed_1247, %2520 : tensor<512x1280xf16>, tensor<1280x1280xf16>) outs(%2521 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2523 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_401 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%2524 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2525 = linalg.matmul ins(%collapsed_1247, %2523 : tensor<512x1280xf16>, tensor<1280x1280xf16>) outs(%2524 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2526 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_402 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%2527 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2528 = linalg.matmul ins(%collapsed_1247, %2526 : tensor<512x1280xf16>, tensor<1280x1280xf16>) outs(%2527 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%expanded_1248 = tensor.expand_shape %2522 [[0, 1], [2, 3]] : tensor<512x1280xf16> into tensor<2x256x8x160xf16>
%2529 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1248 : tensor<2x256x8x160xf16>) outs(%1146 : tensor<2x8x256x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x256x160xf16>
%collapsed_1249 = tensor.collapse_shape %2529 [[0, 1], [2], [3]] : tensor<2x8x256x160xf16> into tensor<16x256x160xf16>
%expanded_1250 = tensor.expand_shape %2525 [[0, 1], [2, 3]] : tensor<512x1280xf16> into tensor<2x256x8x160xf16>
%2530 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1250 : tensor<2x256x8x160xf16>) outs(%1146 : tensor<2x8x256x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x256x160xf16>
%collapsed_1251 = tensor.collapse_shape %2530 [[0, 1], [2], [3]] : tensor<2x8x256x160xf16> into tensor<16x256x160xf16>
%expanded_1252 = tensor.expand_shape %2528 [[0, 1], [2, 3]] : tensor<512x1280xf16> into tensor<2x256x8x160xf16>
%2531 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1252 : tensor<2x256x8x160xf16>) outs(%1146 : tensor<2x8x256x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x256x160xf16>
%collapsed_1253 = tensor.collapse_shape %2531 [[0, 1], [2], [3]] : tensor<2x8x256x160xf16> into tensor<16x256x160xf16>
%2532 = linalg.generic {indexing_maps = [#map16, #map20], iterator_types = ["parallel", "parallel", "parallel"]} ins(%collapsed_1251 : tensor<16x256x160xf16>) outs(%1150 : tensor<16x160x256xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<16x160x256xf16>
%2533 = linalg.fill ins(%cst_694 : f16) outs(%1152 : tensor<16x256x256xf16>) -> tensor<16x256x256xf16>
%2534 = linalg.batch_matmul ins(%collapsed_1249, %2532 : tensor<16x256x160xf16>, tensor<16x160x256xf16>) outs(%2533 : tensor<16x256x256xf16>) -> tensor<16x256x256xf16>
%2535 = linalg.generic {indexing_maps = [#map16, #map21, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2534, %cst : tensor<16x256x256xf16>, tensor<f64>) outs(%1152 : tensor<16x256x256xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.mulf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<16x256x256xf16>
%2536 = linalg.fill ins(%c0_i64 : i64) outs(%1156 : tensor<16x256x1xi64>) -> tensor<16x256x1xi64>
%2537 = linalg.fill ins(%cst_696 : f16) outs(%1158 : tensor<16x256x1xf16>) -> tensor<16x256x1xf16>
%2538:2 = linalg.generic {indexing_maps = [#map16, #map17, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%2535 : tensor<16x256x256xf16>) outs(%2537, %2536 : tensor<16x256x1xf16>, tensor<16x256x1xi64>) {
^bb0(%in: f16, %out: f16, %out_1640: i64):
%4280 = linalg.index 2 : index
%4281 = arith.index_cast %4280 : index to i64
%4282 = arith.maxf %in, %out : f16
%4283 = arith.cmpf ogt, %in, %out : f16
%4284 = arith.select %4283, %4281, %out_1640 : i64
linalg.yield %4282, %4284 : f16, i64
} -> (tensor<16x256x1xf16>, tensor<16x256x1xi64>)
%2539 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2535, %2538#0 : tensor<16x256x256xf16>, tensor<16x256x1xf16>) outs(%1152 : tensor<16x256x256xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x256x256xf16>
%2540 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2539 : tensor<16x256x256xf16>) outs(%1152 : tensor<16x256x256xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.exp %in : f16
linalg.yield %4280 : f16
} -> tensor<16x256x256xf16>
%2541 = linalg.fill ins(%cst_694 : f16) outs(%1158 : tensor<16x256x1xf16>) -> tensor<16x256x1xf16>
%2542 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%2540 : tensor<16x256x256xf16>) outs(%2541 : tensor<16x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<16x256x1xf16>
%2543 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2540, %2542 : tensor<16x256x256xf16>, tensor<16x256x1xf16>) outs(%1152 : tensor<16x256x256xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.divf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x256x256xf16>
%2544 = linalg.fill ins(%cst_694 : f16) outs(%1166 : tensor<16x256x160xf16>) -> tensor<16x256x160xf16>
%2545 = linalg.batch_matmul ins(%2543, %collapsed_1253 : tensor<16x256x256xf16>, tensor<16x256x160xf16>) outs(%2544 : tensor<16x256x160xf16>) -> tensor<16x256x160xf16>
%expanded_1254 = tensor.expand_shape %2545 [[0, 1], [2], [3]] : tensor<16x256x160xf16> into tensor<2x8x256x160xf16>
%2546 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1254 : tensor<2x8x256x160xf16>) outs(%1169 : tensor<2x256x8x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x8x160xf16>
%2547 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_403 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%collapsed_1255 = tensor.collapse_shape %2546 [[0, 1], [2, 3]] : tensor<2x256x8x160xf16> into tensor<512x1280xf16>
%2548 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2549 = linalg.matmul ins(%collapsed_1255, %2547 : tensor<512x1280xf16>, tensor<1280x1280xf16>) outs(%2548 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2550 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_404, %2549 : tensor<1280xf16>, tensor<512x1280xf16>) outs(%1137 : tensor<512x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<512x1280xf16>
%expanded_1256 = tensor.expand_shape %2550 [[0, 1], [2]] : tensor<512x1280xf16> into tensor<2x256x1280xf16>
%2551 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%expanded_1256, %collapsed_1246 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2552 = linalg.fill ins(%cst_694 : f16) outs(%1119 : tensor<2x256x1xf16>) -> tensor<2x256x1xf16>
%2553 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%2551 : tensor<2x256x1280xf16>) outs(%2552 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2554 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2553 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2555 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2554 : tensor<2x256x1xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x1280xf16>
%2556 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2551, %2555 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2557 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2556 : tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.mulf %in, %in : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2558 = linalg.fill ins(%cst_694 : f16) outs(%1119 : tensor<2x256x1xf16>) -> tensor<2x256x1xf16>
%2559 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%2557 : tensor<2x256x1280xf16>) outs(%2558 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2560 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2559 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2561 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2560 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.truncf %cst_700 : f64 to f16
%4281 = arith.addf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x256x1xf16>
%2562 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2561 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.rsqrt %in : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2563 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2562 : tensor<2x256x1xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x1280xf16>
%2564 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2556, %2563 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2565 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2564, %cst_405 : tensor<2x256x1280xf16>, tensor<1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2566 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2565, %cst_406 : tensor<2x256x1280xf16>, tensor<1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2567 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_407 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%collapsed_1257 = tensor.collapse_shape %2566 [[0, 1], [2]] : tensor<2x256x1280xf16> into tensor<512x1280xf16>
%2568 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2569 = linalg.matmul ins(%collapsed_1257, %2567 : tensor<512x1280xf16>, tensor<1280x1280xf16>) outs(%2568 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2570 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_408 : tensor<1280x768xf16>) outs(%1194 : tensor<768x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<768x1280xf16>
%2571 = linalg.fill ins(%cst_694 : f16) outs(%1196 : tensor<154x1280xf16>) -> tensor<154x1280xf16>
%2572 = linalg.matmul ins(%collapsed_761, %2570 : tensor<154x768xf16>, tensor<768x1280xf16>) outs(%2571 : tensor<154x1280xf16>) -> tensor<154x1280xf16>
%2573 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_409 : tensor<1280x768xf16>) outs(%1194 : tensor<768x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<768x1280xf16>
%2574 = linalg.fill ins(%cst_694 : f16) outs(%1196 : tensor<154x1280xf16>) -> tensor<154x1280xf16>
%2575 = linalg.matmul ins(%collapsed_761, %2573 : tensor<154x768xf16>, tensor<768x1280xf16>) outs(%2574 : tensor<154x1280xf16>) -> tensor<154x1280xf16>
%expanded_1258 = tensor.expand_shape %2569 [[0, 1], [2, 3]] : tensor<512x1280xf16> into tensor<2x256x8x160xf16>
%2576 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1258 : tensor<2x256x8x160xf16>) outs(%1146 : tensor<2x8x256x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x256x160xf16>
%collapsed_1259 = tensor.collapse_shape %2576 [[0, 1], [2], [3]] : tensor<2x8x256x160xf16> into tensor<16x256x160xf16>
%expanded_1260 = tensor.expand_shape %2572 [[0, 1], [2, 3]] : tensor<154x1280xf16> into tensor<2x77x8x160xf16>
%2577 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1260 : tensor<2x77x8x160xf16>) outs(%1203 : tensor<2x8x77x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x77x160xf16>
%collapsed_1261 = tensor.collapse_shape %2577 [[0, 1], [2], [3]] : tensor<2x8x77x160xf16> into tensor<16x77x160xf16>
%expanded_1262 = tensor.expand_shape %2575 [[0, 1], [2, 3]] : tensor<154x1280xf16> into tensor<2x77x8x160xf16>
%2578 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1262 : tensor<2x77x8x160xf16>) outs(%1203 : tensor<2x8x77x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x77x160xf16>
%collapsed_1263 = tensor.collapse_shape %2578 [[0, 1], [2], [3]] : tensor<2x8x77x160xf16> into tensor<16x77x160xf16>
%2579 = linalg.generic {indexing_maps = [#map16, #map20], iterator_types = ["parallel", "parallel", "parallel"]} ins(%collapsed_1261 : tensor<16x77x160xf16>) outs(%1206 : tensor<16x160x77xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<16x160x77xf16>
%2580 = linalg.fill ins(%cst_694 : f16) outs(%1208 : tensor<16x256x77xf16>) -> tensor<16x256x77xf16>
%2581 = linalg.batch_matmul ins(%collapsed_1259, %2579 : tensor<16x256x160xf16>, tensor<16x160x77xf16>) outs(%2580 : tensor<16x256x77xf16>) -> tensor<16x256x77xf16>
%2582 = linalg.generic {indexing_maps = [#map16, #map21, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2581, %cst : tensor<16x256x77xf16>, tensor<f64>) outs(%1208 : tensor<16x256x77xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.mulf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<16x256x77xf16>
%2583 = linalg.fill ins(%c0_i64 : i64) outs(%1156 : tensor<16x256x1xi64>) -> tensor<16x256x1xi64>
%2584 = linalg.fill ins(%cst_696 : f16) outs(%1158 : tensor<16x256x1xf16>) -> tensor<16x256x1xf16>
%2585:2 = linalg.generic {indexing_maps = [#map16, #map17, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%2582 : tensor<16x256x77xf16>) outs(%2584, %2583 : tensor<16x256x1xf16>, tensor<16x256x1xi64>) {
^bb0(%in: f16, %out: f16, %out_1640: i64):
%4280 = linalg.index 2 : index
%4281 = arith.index_cast %4280 : index to i64
%4282 = arith.maxf %in, %out : f16
%4283 = arith.cmpf ogt, %in, %out : f16
%4284 = arith.select %4283, %4281, %out_1640 : i64
linalg.yield %4282, %4284 : f16, i64
} -> (tensor<16x256x1xf16>, tensor<16x256x1xi64>)
%2586 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2582, %2585#0 : tensor<16x256x77xf16>, tensor<16x256x1xf16>) outs(%1208 : tensor<16x256x77xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x256x77xf16>
%2587 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2586 : tensor<16x256x77xf16>) outs(%1208 : tensor<16x256x77xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.exp %in : f16
linalg.yield %4280 : f16
} -> tensor<16x256x77xf16>
%2588 = linalg.fill ins(%cst_694 : f16) outs(%1158 : tensor<16x256x1xf16>) -> tensor<16x256x1xf16>
%2589 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%2587 : tensor<16x256x77xf16>) outs(%2588 : tensor<16x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<16x256x1xf16>
%2590 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2587, %2589 : tensor<16x256x77xf16>, tensor<16x256x1xf16>) outs(%1208 : tensor<16x256x77xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.divf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x256x77xf16>
%2591 = linalg.fill ins(%cst_694 : f16) outs(%1166 : tensor<16x256x160xf16>) -> tensor<16x256x160xf16>
%2592 = linalg.batch_matmul ins(%2590, %collapsed_1263 : tensor<16x256x77xf16>, tensor<16x77x160xf16>) outs(%2591 : tensor<16x256x160xf16>) -> tensor<16x256x160xf16>
%expanded_1264 = tensor.expand_shape %2592 [[0, 1], [2], [3]] : tensor<16x256x160xf16> into tensor<2x8x256x160xf16>
%2593 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1264 : tensor<2x8x256x160xf16>) outs(%1169 : tensor<2x256x8x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x8x160xf16>
%2594 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_410 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%collapsed_1265 = tensor.collapse_shape %2593 [[0, 1], [2, 3]] : tensor<2x256x8x160xf16> into tensor<512x1280xf16>
%2595 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2596 = linalg.matmul ins(%collapsed_1265, %2594 : tensor<512x1280xf16>, tensor<1280x1280xf16>) outs(%2595 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2597 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_411, %2596 : tensor<1280xf16>, tensor<512x1280xf16>) outs(%1137 : tensor<512x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<512x1280xf16>
%expanded_1266 = tensor.expand_shape %2597 [[0, 1], [2]] : tensor<512x1280xf16> into tensor<2x256x1280xf16>
%2598 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%expanded_1266, %2551 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2599 = linalg.fill ins(%cst_694 : f16) outs(%1119 : tensor<2x256x1xf16>) -> tensor<2x256x1xf16>
%2600 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%2598 : tensor<2x256x1280xf16>) outs(%2599 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2601 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2600 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2602 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2601 : tensor<2x256x1xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x1280xf16>
%2603 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2598, %2602 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2604 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2603 : tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.mulf %in, %in : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2605 = linalg.fill ins(%cst_694 : f16) outs(%1119 : tensor<2x256x1xf16>) -> tensor<2x256x1xf16>
%2606 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%2604 : tensor<2x256x1280xf16>) outs(%2605 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2607 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2606 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2608 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2607 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.truncf %cst_700 : f64 to f16
%4281 = arith.addf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x256x1xf16>
%2609 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2608 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.rsqrt %in : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2610 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2609 : tensor<2x256x1xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x1280xf16>
%2611 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2603, %2610 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2612 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2611, %cst_412 : tensor<2x256x1280xf16>, tensor<1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2613 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2612, %cst_413 : tensor<2x256x1280xf16>, tensor<1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2614 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_414 : tensor<10240x1280xf16>) outs(%1243 : tensor<1280x10240xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x10240xf16>
%collapsed_1267 = tensor.collapse_shape %2613 [[0, 1], [2]] : tensor<2x256x1280xf16> into tensor<512x1280xf16>
%2615 = linalg.fill ins(%cst_694 : f16) outs(%1245 : tensor<512x10240xf16>) -> tensor<512x10240xf16>
%2616 = linalg.matmul ins(%collapsed_1267, %2614 : tensor<512x1280xf16>, tensor<1280x10240xf16>) outs(%2615 : tensor<512x10240xf16>) -> tensor<512x10240xf16>
%2617 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_415, %2616 : tensor<10240xf16>, tensor<512x10240xf16>) outs(%1245 : tensor<512x10240xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<512x10240xf16>
%expanded_1268 = tensor.expand_shape %2617 [[0, 1], [2]] : tensor<512x10240xf16> into tensor<2x256x10240xf16>
%extracted_slice_1269 = tensor.extract_slice %expanded_1268[0, 0, 0] [2, 256, 5120] [1, 1, 1] : tensor<2x256x10240xf16> to tensor<2x256x5120xf16>
%extracted_slice_1270 = tensor.extract_slice %expanded_1268[0, 0, 5120] [2, 256, 5120] [1, 1, 1] : tensor<2x256x10240xf16> to tensor<2x256x5120xf16>
%2618 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%extracted_slice_1270 : tensor<2x256x5120xf16>) outs(%1249 : tensor<2x256x5120xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.sqrt %cst_697 : f16
%4281 = arith.divf %in, %4280 : f16
%4282 = math.erf %4281 : f16
%4283 = arith.addf %4282, %cst_695 : f16
%4284 = arith.mulf %4283, %cst_698 : f16
%4285 = arith.mulf %in, %4284 : f16
linalg.yield %4285 : f16
} -> tensor<2x256x5120xf16>
%2619 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%extracted_slice_1269, %2618 : tensor<2x256x5120xf16>, tensor<2x256x5120xf16>) outs(%1249 : tensor<2x256x5120xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x5120xf16>
%2620 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_416 : tensor<1280x5120xf16>) outs(%1252 : tensor<5120x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<5120x1280xf16>
%collapsed_1271 = tensor.collapse_shape %2619 [[0, 1], [2]] : tensor<2x256x5120xf16> into tensor<512x5120xf16>
%2621 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2622 = linalg.matmul ins(%collapsed_1271, %2620 : tensor<512x5120xf16>, tensor<5120x1280xf16>) outs(%2621 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2623 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_417, %2622 : tensor<1280xf16>, tensor<512x1280xf16>) outs(%1137 : tensor<512x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<512x1280xf16>
%expanded_1272 = tensor.expand_shape %2623 [[0, 1], [2]] : tensor<512x1280xf16> into tensor<2x256x1280xf16>
%2624 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%expanded_1272, %2598 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%expanded_1273 = tensor.expand_shape %2624 [[0], [1, 2], [3]] : tensor<2x256x1280xf16> into tensor<2x16x16x1280xf16>
%2625 = linalg.generic {indexing_maps = [#map11, #map22], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1273 : tensor<2x16x16x1280xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%2626 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_419 : tensor<1280xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%2627 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%2625, %cst_418 : tensor<2x1280x16x16xf16>, tensor<1280x1280x1x1xf16>) outs(%2626 : tensor<2x1280x16x16xf16>) -> tensor<2x1280x16x16xf16>
%2628 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2627, %2474 : tensor<2x1280x16x16xf16>, tensor<2x1280x16x16xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x16x16xf16>
%2629 = tensor.empty() : tensor<2x1920x16x16xf16>
%inserted_slice_1274 = tensor.insert_slice %2628 into %2629[0, 0, 0, 0] [2, 1280, 16, 16] [1, 1, 1, 1] : tensor<2x1280x16x16xf16> into tensor<2x1920x16x16xf16>
%inserted_slice_1275 = tensor.insert_slice %1007 into %inserted_slice_1274[0, 1280, 0, 0] [2, 640, 16, 16] [1, 1, 1, 1] : tensor<2x640x16x16xf16> into tensor<2x1920x16x16xf16>
%collapsed_1276 = tensor.collapse_shape %inserted_slice_1275 [[0], [1], [2, 3]] : tensor<2x1920x16x16xf16> into tensor<2x1920x256xf16>
%expanded_1277 = tensor.expand_shape %collapsed_1276 [[0], [1, 2], [3]] : tensor<2x1920x256xf16> into tensor<2x32x60x256xf16>
%2630 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%2631 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%2630 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%2632 = tensor.empty() : tensor<2x32x60x256xf32>
%2633 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2631 : tensor<f32>) outs(%2632 : tensor<2x32x60x256xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x60x256xf32>
%2634 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1277 : tensor<2x32x60x256xf16>) outs(%2633 : tensor<2x32x60x256xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x60x256xf32>
%2635 = tensor.empty() : tensor<2x32x60x256xf64>
%2636 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2634 : tensor<2x32x60x256xf32>) outs(%2635 : tensor<2x32x60x256xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x60x256xf64>
%2637 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%2638 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2636 : tensor<2x32x60x256xf64>) outs(%2637 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2639 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2638 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_715 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2640 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2636, %2639 : tensor<2x32x60x256xf64>, tensor<2x32x1x1xf64>) outs(%2635 : tensor<2x32x60x256xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x60x256xf64>
%2641 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2640 : tensor<2x32x60x256xf64>) outs(%2635 : tensor<2x32x60x256xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x60x256xf64>
%2642 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%2643 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2641 : tensor<2x32x60x256xf64>) outs(%2642 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2644 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2643 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_715 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2645 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2644 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2646 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%2647 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2634 : tensor<2x32x60x256xf32>) outs(%2646 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2648 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2647 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_716 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2649 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2645, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%2650 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2649 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2651 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1277, %2648 : tensor<2x32x60x256xf16>, tensor<2x32x1x1xf32>) outs(%2632 : tensor<2x32x60x256xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x60x256xf32>
%2652 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2651, %2650 : tensor<2x32x60x256xf32>, tensor<2x32x1x1xf32>) outs(%2632 : tensor<2x32x60x256xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x60x256xf32>
%collapsed_1278 = tensor.collapse_shape %2652 [[0], [1, 2], [3]] : tensor<2x32x60x256xf32> into tensor<2x1920x256xf32>
%expanded_1279 = tensor.expand_shape %collapsed_1278 [[0], [1], [2, 3]] : tensor<2x1920x256xf32> into tensor<2x1920x16x16xf32>
%expanded_1280 = tensor.expand_shape %cst_420 [[0, 1, 2]] : tensor<1920xf16> into tensor<1920x1x1xf16>
%2653 = tensor.empty() : tensor<2x1920x16x16xf32>
%2654 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1279, %expanded_1280 : tensor<2x1920x16x16xf32>, tensor<1920x1x1xf16>) outs(%2653 : tensor<2x1920x16x16xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1920x16x16xf32>
%expanded_1281 = tensor.expand_shape %cst_421 [[0, 1, 2]] : tensor<1920xf16> into tensor<1920x1x1xf16>
%2655 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2654, %expanded_1281 : tensor<2x1920x16x16xf32>, tensor<1920x1x1xf16>) outs(%2653 : tensor<2x1920x16x16xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1920x16x16xf32>
%2656 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%2657 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%2656 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%2658 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2657 : tensor<f16>) outs(%2629 : tensor<2x1920x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1920x16x16xf16>
%2659 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2655 : tensor<2x1920x16x16xf32>) outs(%2658 : tensor<2x1920x16x16xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x1920x16x16xf16>
%2660 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2659 : tensor<2x1920x16x16xf16>) outs(%2629 : tensor<2x1920x16x16xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1920x16x16xf16>
%2661 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2660, %2659 : tensor<2x1920x16x16xf16>, tensor<2x1920x16x16xf16>) outs(%2629 : tensor<2x1920x16x16xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1920x16x16xf16>
%padded_1282 = tensor.pad %2661 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x1920x16x16xf16> to tensor<2x1920x18x18xf16>
%2662 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_423 : tensor<1280xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%2663 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_1282, %cst_422 : tensor<2x1920x18x18xf16>, tensor<1280x1920x3x3xf16>) outs(%2662 : tensor<2x1280x16x16xf16>) -> tensor<2x1280x16x16xf16>
%2664 = linalg.generic {indexing_maps = [#map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%40 : tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280xf16>
%2665 = linalg.generic {indexing_maps = [#map5, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%2664, %40 : tensor<2x1280xf16>, tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280xf16>
%2666 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_424 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%2667 = linalg.fill ins(%cst_694 : f16) outs(%30 : tensor<2x1280xf16>) -> tensor<2x1280xf16>
%2668 = linalg.matmul ins(%2665, %2666 : tensor<2x1280xf16>, tensor<1280x1280xf16>) outs(%2667 : tensor<2x1280xf16>) -> tensor<2x1280xf16>
%2669 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_425, %2668 : tensor<1280xf16>, tensor<2x1280xf16>) outs(%30 : tensor<2x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280xf16>
%expanded_1283 = tensor.expand_shape %2669 [[0], [1, 2, 3]] : tensor<2x1280xf16> into tensor<2x1280x1x1xf16>
%2670 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2663, %expanded_1283 : tensor<2x1280x16x16xf16>, tensor<2x1280x1x1xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x16x16xf16>
%collapsed_1284 = tensor.collapse_shape %2670 [[0], [1], [2, 3]] : tensor<2x1280x16x16xf16> into tensor<2x1280x256xf16>
%expanded_1285 = tensor.expand_shape %collapsed_1284 [[0], [1, 2], [3]] : tensor<2x1280x256xf16> into tensor<2x32x40x256xf16>
%2671 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%2672 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%2671 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%2673 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2672 : tensor<f32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x40x256xf32>
%2674 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1285 : tensor<2x32x40x256xf16>) outs(%2673 : tensor<2x32x40x256xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x256xf32>
%2675 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2674 : tensor<2x32x40x256xf32>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%2676 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%2677 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2675 : tensor<2x32x40x256xf64>) outs(%2676 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2678 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2677 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_705 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2679 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2675, %2678 : tensor<2x32x40x256xf64>, tensor<2x32x1x1xf64>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%2680 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2679 : tensor<2x32x40x256xf64>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%2681 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%2682 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2680 : tensor<2x32x40x256xf64>) outs(%2681 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2683 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2682 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_705 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2684 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2683 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2685 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%2686 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2674 : tensor<2x32x40x256xf32>) outs(%2685 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2687 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2686 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_706 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2688 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2684, %cst_4 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%2689 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2688 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2690 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1285, %2687 : tensor<2x32x40x256xf16>, tensor<2x32x1x1xf32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x40x256xf32>
%2691 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2690, %2689 : tensor<2x32x40x256xf32>, tensor<2x32x1x1xf32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x256xf32>
%collapsed_1286 = tensor.collapse_shape %2691 [[0], [1, 2], [3]] : tensor<2x32x40x256xf32> into tensor<2x1280x256xf32>
%expanded_1287 = tensor.expand_shape %collapsed_1286 [[0], [1], [2, 3]] : tensor<2x1280x256xf32> into tensor<2x1280x16x16xf32>
%expanded_1288 = tensor.expand_shape %cst_426 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%2692 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1287, %expanded_1288 : tensor<2x1280x16x16xf32>, tensor<1280x1x1xf16>) outs(%1073 : tensor<2x1280x16x16xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x16x16xf32>
%expanded_1289 = tensor.expand_shape %cst_427 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%2693 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2692, %expanded_1289 : tensor<2x1280x16x16xf32>, tensor<1280x1x1xf16>) outs(%1073 : tensor<2x1280x16x16xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x16x16xf32>
%2694 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%2695 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%2694 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%2696 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2695 : tensor<f16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%2697 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2693 : tensor<2x1280x16x16xf32>) outs(%2696 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x1280x16x16xf16>
%2698 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2697 : tensor<2x1280x16x16xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.negf %in : f16
%4281 = math.exp %4280 : f16
%4282 = arith.addf %4281, %cst_695 : f16
%4283 = arith.divf %cst_695, %4282 : f16
linalg.yield %4283 : f16
} -> tensor<2x1280x16x16xf16>
%2699 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2698, %2697 : tensor<2x1280x16x16xf16>, tensor<2x1280x16x16xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x16x16xf16>
%padded_1290 = tensor.pad %2699 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst_694 : f16
} : tensor<2x1280x16x16xf16> to tensor<2x1280x18x18xf16>
%2700 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_429 : tensor<1280xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%2701 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%padded_1290, %cst_428 : tensor<2x1280x18x18xf16>, tensor<1280x1280x3x3xf16>) outs(%2700 : tensor<2x1280x16x16xf16>) -> tensor<2x1280x16x16xf16>
%2702 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_431 : tensor<1280xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%2703 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%inserted_slice_1275, %cst_430 : tensor<2x1920x16x16xf16>, tensor<1280x1920x1x1xf16>) outs(%2702 : tensor<2x1280x16x16xf16>) -> tensor<2x1280x16x16xf16>
%2704 = linalg.generic {indexing_maps = [#map11, #map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2703, %2701 : tensor<2x1280x16x16xf16>, tensor<2x1280x16x16xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x1280x16x16xf16>
%2705 = linalg.generic {indexing_maps = [#map11, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2704, %cst_3 : tensor<2x1280x16x16xf16>, tensor<f64>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.divf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x1280x16x16xf16>
%collapsed_1291 = tensor.collapse_shape %2705 [[0], [1], [2, 3]] : tensor<2x1280x16x16xf16> into tensor<2x1280x256xf16>
%expanded_1292 = tensor.expand_shape %collapsed_1291 [[0], [1, 2], [3]] : tensor<2x1280x256xf16> into tensor<2x32x40x256xf16>
%2706 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%2707 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%2706 : tensor<f64>) outs(%9 : tensor<f32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<f32>
%2708 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2707 : tensor<f32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<2x32x40x256xf32>
%2709 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1292 : tensor<2x32x40x256xf16>) outs(%2708 : tensor<2x32x40x256xf32>) {
^bb0(%in: f16, %out: f32):
%4280 = arith.extf %in : f16 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x256xf32>
%2710 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2709 : tensor<2x32x40x256xf32>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f32, %out: f64):
%4280 = arith.extf %in : f32 to f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%2711 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%2712 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2710 : tensor<2x32x40x256xf64>) outs(%2711 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2713 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2712 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_705 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2714 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2710, %2713 : tensor<2x32x40x256xf64>, tensor<2x32x1x1xf64>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f64, %in_1640: f64, %out: f64):
%4280 = arith.subf %in, %in_1640 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%2715 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2714 : tensor<2x32x40x256xf64>) outs(%1055 : tensor<2x32x40x256xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.mulf %in, %in : f64
linalg.yield %4280 : f64
} -> tensor<2x32x40x256xf64>
%2716 = linalg.fill ins(%cst_699 : f64) outs(%51 : tensor<2x32x1x1xf64>) -> tensor<2x32x1x1xf64>
%2717 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2715 : tensor<2x32x40x256xf64>) outs(%2716 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.addf %in, %out : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2718 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2717 : tensor<2x32x1x1xf64>) outs(%51 : tensor<2x32x1x1xf64>) {
^bb0(%in: f64, %out: f64):
%4280 = arith.divf %in, %cst_705 : f64
linalg.yield %4280 : f64
} -> tensor<2x32x1x1xf64>
%2719 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2718 : tensor<2x32x1x1xf64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f64, %out: f32):
%4280 = arith.truncf %in : f64 to f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2720 = linalg.fill ins(%cst_701 : f32) outs(%60 : tensor<2x32x1x1xf32>) -> tensor<2x32x1x1xf32>
%2721 = linalg.generic {indexing_maps = [#map11, #map13], iterator_types = ["parallel", "parallel", "reduction", "reduction"]} ins(%2709 : tensor<2x32x40x256xf32>) outs(%2720 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.addf %in, %out : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2722 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2721 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = arith.divf %in, %cst_706 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2723 = linalg.generic {indexing_maps = [#map13, #map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2719, %cst_2 : tensor<2x32x1x1xf32>, tensor<f64>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %in_1640: f64, %out: f32):
%4280 = arith.truncf %in_1640 : f64 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x1x1xf32>
%2724 = linalg.generic {indexing_maps = [#map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2723 : tensor<2x32x1x1xf32>) outs(%60 : tensor<2x32x1x1xf32>) {
^bb0(%in: f32, %out: f32):
%4280 = math.rsqrt %in : f32
linalg.yield %4280 : f32
} -> tensor<2x32x1x1xf32>
%2725 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1292, %2722 : tensor<2x32x40x256xf16>, tensor<2x32x1x1xf32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f16, %in_1640: f32, %out: f32):
%4280 = arith.extf %in : f16 to f32
%4281 = arith.subf %4280, %in_1640 : f32
linalg.yield %4281 : f32
} -> tensor<2x32x40x256xf32>
%2726 = linalg.generic {indexing_maps = [#map11, #map13, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2725, %2724 : tensor<2x32x40x256xf32>, tensor<2x32x1x1xf32>) outs(%1052 : tensor<2x32x40x256xf32>) {
^bb0(%in: f32, %in_1640: f32, %out: f32):
%4280 = arith.mulf %in, %in_1640 : f32
linalg.yield %4280 : f32
} -> tensor<2x32x40x256xf32>
%collapsed_1293 = tensor.collapse_shape %2726 [[0], [1, 2], [3]] : tensor<2x32x40x256xf32> into tensor<2x1280x256xf32>
%expanded_1294 = tensor.expand_shape %collapsed_1293 [[0], [1], [2, 3]] : tensor<2x1280x256xf32> into tensor<2x1280x16x16xf32>
%expanded_1295 = tensor.expand_shape %cst_432 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%2727 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1294, %expanded_1295 : tensor<2x1280x16x16xf32>, tensor<1280x1x1xf16>) outs(%1073 : tensor<2x1280x16x16xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.mulf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x16x16xf32>
%expanded_1296 = tensor.expand_shape %cst_433 [[0, 1, 2]] : tensor<1280xf16> into tensor<1280x1x1xf16>
%2728 = linalg.generic {indexing_maps = [#map11, #map14, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2727, %expanded_1296 : tensor<2x1280x16x16xf32>, tensor<1280x1x1xf16>) outs(%1073 : tensor<2x1280x16x16xf32>) {
^bb0(%in: f32, %in_1640: f16, %out: f32):
%4280 = arith.extf %in_1640 : f16 to f32
%4281 = arith.addf %in, %4280 : f32
linalg.yield %4281 : f32
} -> tensor<2x1280x16x16xf32>
%2729 = linalg.fill ins(%cst_699 : f64) outs(%7 : tensor<f64>) -> tensor<f64>
%2730 = linalg.generic {indexing_maps = [#map3, #map3], iterator_types = []} ins(%2729 : tensor<f64>) outs(%23 : tensor<f16>) {
^bb0(%in: f64, %out: f16):
%4280 = arith.truncf %in : f64 to f16
linalg.yield %4280 : f16
} -> tensor<f16>
%2731 = linalg.generic {indexing_maps = [#map12, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2730 : tensor<f16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%2732 = linalg.generic {indexing_maps = [#map11, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2728 : tensor<2x1280x16x16xf32>) outs(%2731 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f32, %out: f16):
%4280 = arith.truncf %in : f32 to f16
linalg.yield %4280 : f16
} -> tensor<2x1280x16x16xf16>
%2733 = linalg.generic {indexing_maps = [#map10, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%cst_435 : tensor<1280xf16>) outs(%1040 : tensor<2x1280x16x16xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x1280x16x16xf16>
%2734 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>} ins(%2732, %cst_434 : tensor<2x1280x16x16xf16>, tensor<1280x1280x1x1xf16>) outs(%2733 : tensor<2x1280x16x16xf16>) -> tensor<2x1280x16x16xf16>
%2735 = linalg.generic {indexing_maps = [#map11, #map15], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%2734 : tensor<2x1280x16x16xf16>) outs(%1117 : tensor<2x16x16x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x16x16x1280xf16>
%collapsed_1297 = tensor.collapse_shape %2735 [[0], [1, 2], [3]] : tensor<2x16x16x1280xf16> into tensor<2x256x1280xf16>
%2736 = linalg.fill ins(%cst_694 : f16) outs(%1119 : tensor<2x256x1xf16>) -> tensor<2x256x1xf16>
%2737 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%collapsed_1297 : tensor<2x256x1280xf16>) outs(%2736 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2738 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2737 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2739 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2738 : tensor<2x256x1xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x1280xf16>
%2740 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%collapsed_1297, %2739 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2741 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2740 : tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.mulf %in, %in : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2742 = linalg.fill ins(%cst_694 : f16) outs(%1119 : tensor<2x256x1xf16>) -> tensor<2x256x1xf16>
%2743 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%2741 : tensor<2x256x1280xf16>) outs(%2742 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2744 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2743 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2745 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2744 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.truncf %cst_700 : f64 to f16
%4281 = arith.addf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x256x1xf16>
%2746 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2745 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.rsqrt %in : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2747 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2746 : tensor<2x256x1xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x1280xf16>
%2748 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2740, %2747 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2749 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2748, %cst_436 : tensor<2x256x1280xf16>, tensor<1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2750 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2749, %cst_437 : tensor<2x256x1280xf16>, tensor<1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2751 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_438 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%collapsed_1298 = tensor.collapse_shape %2750 [[0, 1], [2]] : tensor<2x256x1280xf16> into tensor<512x1280xf16>
%2752 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2753 = linalg.matmul ins(%collapsed_1298, %2751 : tensor<512x1280xf16>, tensor<1280x1280xf16>) outs(%2752 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2754 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_439 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%2755 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2756 = linalg.matmul ins(%collapsed_1298, %2754 : tensor<512x1280xf16>, tensor<1280x1280xf16>) outs(%2755 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2757 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_440 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%2758 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2759 = linalg.matmul ins(%collapsed_1298, %2757 : tensor<512x1280xf16>, tensor<1280x1280xf16>) outs(%2758 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%expanded_1299 = tensor.expand_shape %2753 [[0, 1], [2, 3]] : tensor<512x1280xf16> into tensor<2x256x8x160xf16>
%2760 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1299 : tensor<2x256x8x160xf16>) outs(%1146 : tensor<2x8x256x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x256x160xf16>
%collapsed_1300 = tensor.collapse_shape %2760 [[0, 1], [2], [3]] : tensor<2x8x256x160xf16> into tensor<16x256x160xf16>
%expanded_1301 = tensor.expand_shape %2756 [[0, 1], [2, 3]] : tensor<512x1280xf16> into tensor<2x256x8x160xf16>
%2761 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1301 : tensor<2x256x8x160xf16>) outs(%1146 : tensor<2x8x256x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x256x160xf16>
%collapsed_1302 = tensor.collapse_shape %2761 [[0, 1], [2], [3]] : tensor<2x8x256x160xf16> into tensor<16x256x160xf16>
%expanded_1303 = tensor.expand_shape %2759 [[0, 1], [2, 3]] : tensor<512x1280xf16> into tensor<2x256x8x160xf16>
%2762 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1303 : tensor<2x256x8x160xf16>) outs(%1146 : tensor<2x8x256x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x256x160xf16>
%collapsed_1304 = tensor.collapse_shape %2762 [[0, 1], [2], [3]] : tensor<2x8x256x160xf16> into tensor<16x256x160xf16>
%2763 = linalg.generic {indexing_maps = [#map16, #map20], iterator_types = ["parallel", "parallel", "parallel"]} ins(%collapsed_1302 : tensor<16x256x160xf16>) outs(%1150 : tensor<16x160x256xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<16x160x256xf16>
%2764 = linalg.fill ins(%cst_694 : f16) outs(%1152 : tensor<16x256x256xf16>) -> tensor<16x256x256xf16>
%2765 = linalg.batch_matmul ins(%collapsed_1300, %2763 : tensor<16x256x160xf16>, tensor<16x160x256xf16>) outs(%2764 : tensor<16x256x256xf16>) -> tensor<16x256x256xf16>
%2766 = linalg.generic {indexing_maps = [#map16, #map21, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2765, %cst : tensor<16x256x256xf16>, tensor<f64>) outs(%1152 : tensor<16x256x256xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.mulf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<16x256x256xf16>
%2767 = linalg.fill ins(%c0_i64 : i64) outs(%1156 : tensor<16x256x1xi64>) -> tensor<16x256x1xi64>
%2768 = linalg.fill ins(%cst_696 : f16) outs(%1158 : tensor<16x256x1xf16>) -> tensor<16x256x1xf16>
%2769:2 = linalg.generic {indexing_maps = [#map16, #map17, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%2766 : tensor<16x256x256xf16>) outs(%2768, %2767 : tensor<16x256x1xf16>, tensor<16x256x1xi64>) {
^bb0(%in: f16, %out: f16, %out_1640: i64):
%4280 = linalg.index 2 : index
%4281 = arith.index_cast %4280 : index to i64
%4282 = arith.maxf %in, %out : f16
%4283 = arith.cmpf ogt, %in, %out : f16
%4284 = arith.select %4283, %4281, %out_1640 : i64
linalg.yield %4282, %4284 : f16, i64
} -> (tensor<16x256x1xf16>, tensor<16x256x1xi64>)
%2770 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2766, %2769#0 : tensor<16x256x256xf16>, tensor<16x256x1xf16>) outs(%1152 : tensor<16x256x256xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x256x256xf16>
%2771 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2770 : tensor<16x256x256xf16>) outs(%1152 : tensor<16x256x256xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.exp %in : f16
linalg.yield %4280 : f16
} -> tensor<16x256x256xf16>
%2772 = linalg.fill ins(%cst_694 : f16) outs(%1158 : tensor<16x256x1xf16>) -> tensor<16x256x1xf16>
%2773 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%2771 : tensor<16x256x256xf16>) outs(%2772 : tensor<16x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<16x256x1xf16>
%2774 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2771, %2773 : tensor<16x256x256xf16>, tensor<16x256x1xf16>) outs(%1152 : tensor<16x256x256xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.divf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x256x256xf16>
%2775 = linalg.fill ins(%cst_694 : f16) outs(%1166 : tensor<16x256x160xf16>) -> tensor<16x256x160xf16>
%2776 = linalg.batch_matmul ins(%2774, %collapsed_1304 : tensor<16x256x256xf16>, tensor<16x256x160xf16>) outs(%2775 : tensor<16x256x160xf16>) -> tensor<16x256x160xf16>
%expanded_1305 = tensor.expand_shape %2776 [[0, 1], [2], [3]] : tensor<16x256x160xf16> into tensor<2x8x256x160xf16>
%2777 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1305 : tensor<2x8x256x160xf16>) outs(%1169 : tensor<2x256x8x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x8x160xf16>
%2778 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_441 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%collapsed_1306 = tensor.collapse_shape %2777 [[0, 1], [2, 3]] : tensor<2x256x8x160xf16> into tensor<512x1280xf16>
%2779 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2780 = linalg.matmul ins(%collapsed_1306, %2778 : tensor<512x1280xf16>, tensor<1280x1280xf16>) outs(%2779 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2781 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_442, %2780 : tensor<1280xf16>, tensor<512x1280xf16>) outs(%1137 : tensor<512x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<512x1280xf16>
%expanded_1307 = tensor.expand_shape %2781 [[0, 1], [2]] : tensor<512x1280xf16> into tensor<2x256x1280xf16>
%2782 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%expanded_1307, %collapsed_1297 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2783 = linalg.fill ins(%cst_694 : f16) outs(%1119 : tensor<2x256x1xf16>) -> tensor<2x256x1xf16>
%2784 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%2782 : tensor<2x256x1280xf16>) outs(%2783 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2785 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2784 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2786 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2785 : tensor<2x256x1xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x1280xf16>
%2787 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2782, %2786 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2788 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2787 : tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.mulf %in, %in : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2789 = linalg.fill ins(%cst_694 : f16) outs(%1119 : tensor<2x256x1xf16>) -> tensor<2x256x1xf16>
%2790 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%2788 : tensor<2x256x1280xf16>) outs(%2789 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2791 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2790 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.divf %in, %cst_712 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2792 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2791 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.truncf %cst_700 : f64 to f16
%4281 = arith.addf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<2x256x1xf16>
%2793 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2792 : tensor<2x256x1xf16>) outs(%1119 : tensor<2x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.rsqrt %in : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1xf16>
%2794 = linalg.generic {indexing_maps = [#map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2793 : tensor<2x256x1xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x1280xf16>
%2795 = linalg.generic {indexing_maps = [#map16, #map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2787, %2794 : tensor<2x256x1280xf16>, tensor<2x256x1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2796 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2795, %cst_443 : tensor<2x256x1280xf16>, tensor<1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.mulf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2797 = linalg.generic {indexing_maps = [#map16, #map18, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2796, %cst_444 : tensor<2x256x1280xf16>, tensor<1280xf16>) outs(%1123 : tensor<2x256x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.addf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<2x256x1280xf16>
%2798 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_445 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%collapsed_1308 = tensor.collapse_shape %2797 [[0, 1], [2]] : tensor<2x256x1280xf16> into tensor<512x1280xf16>
%2799 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2800 = linalg.matmul ins(%collapsed_1308, %2798 : tensor<512x1280xf16>, tensor<1280x1280xf16>) outs(%2799 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2801 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_446 : tensor<1280x768xf16>) outs(%1194 : tensor<768x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<768x1280xf16>
%2802 = linalg.fill ins(%cst_694 : f16) outs(%1196 : tensor<154x1280xf16>) -> tensor<154x1280xf16>
%2803 = linalg.matmul ins(%collapsed_761, %2801 : tensor<154x768xf16>, tensor<768x1280xf16>) outs(%2802 : tensor<154x1280xf16>) -> tensor<154x1280xf16>
%2804 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_447 : tensor<1280x768xf16>) outs(%1194 : tensor<768x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<768x1280xf16>
%2805 = linalg.fill ins(%cst_694 : f16) outs(%1196 : tensor<154x1280xf16>) -> tensor<154x1280xf16>
%2806 = linalg.matmul ins(%collapsed_761, %2804 : tensor<154x768xf16>, tensor<768x1280xf16>) outs(%2805 : tensor<154x1280xf16>) -> tensor<154x1280xf16>
%expanded_1309 = tensor.expand_shape %2800 [[0, 1], [2, 3]] : tensor<512x1280xf16> into tensor<2x256x8x160xf16>
%2807 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1309 : tensor<2x256x8x160xf16>) outs(%1146 : tensor<2x8x256x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x256x160xf16>
%collapsed_1310 = tensor.collapse_shape %2807 [[0, 1], [2], [3]] : tensor<2x8x256x160xf16> into tensor<16x256x160xf16>
%expanded_1311 = tensor.expand_shape %2803 [[0, 1], [2, 3]] : tensor<154x1280xf16> into tensor<2x77x8x160xf16>
%2808 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1311 : tensor<2x77x8x160xf16>) outs(%1203 : tensor<2x8x77x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x77x160xf16>
%collapsed_1312 = tensor.collapse_shape %2808 [[0, 1], [2], [3]] : tensor<2x8x77x160xf16> into tensor<16x77x160xf16>
%expanded_1313 = tensor.expand_shape %2806 [[0, 1], [2, 3]] : tensor<154x1280xf16> into tensor<2x77x8x160xf16>
%2809 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1313 : tensor<2x77x8x160xf16>) outs(%1203 : tensor<2x8x77x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x8x77x160xf16>
%collapsed_1314 = tensor.collapse_shape %2809 [[0, 1], [2], [3]] : tensor<2x8x77x160xf16> into tensor<16x77x160xf16>
%2810 = linalg.generic {indexing_maps = [#map16, #map20], iterator_types = ["parallel", "parallel", "parallel"]} ins(%collapsed_1312 : tensor<16x77x160xf16>) outs(%1206 : tensor<16x160x77xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<16x160x77xf16>
%2811 = linalg.fill ins(%cst_694 : f16) outs(%1208 : tensor<16x256x77xf16>) -> tensor<16x256x77xf16>
%2812 = linalg.batch_matmul ins(%collapsed_1310, %2810 : tensor<16x256x160xf16>, tensor<16x160x77xf16>) outs(%2811 : tensor<16x256x77xf16>) -> tensor<16x256x77xf16>
%2813 = linalg.generic {indexing_maps = [#map16, #map21, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2812, %cst : tensor<16x256x77xf16>, tensor<f64>) outs(%1208 : tensor<16x256x77xf16>) {
^bb0(%in: f16, %in_1640: f64, %out: f16):
%4280 = arith.truncf %in_1640 : f64 to f16
%4281 = arith.mulf %in, %4280 : f16
linalg.yield %4281 : f16
} -> tensor<16x256x77xf16>
%2814 = linalg.fill ins(%c0_i64 : i64) outs(%1156 : tensor<16x256x1xi64>) -> tensor<16x256x1xi64>
%2815 = linalg.fill ins(%cst_696 : f16) outs(%1158 : tensor<16x256x1xf16>) -> tensor<16x256x1xf16>
%2816:2 = linalg.generic {indexing_maps = [#map16, #map17, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%2813 : tensor<16x256x77xf16>) outs(%2815, %2814 : tensor<16x256x1xf16>, tensor<16x256x1xi64>) {
^bb0(%in: f16, %out: f16, %out_1640: i64):
%4280 = linalg.index 2 : index
%4281 = arith.index_cast %4280 : index to i64
%4282 = arith.maxf %in, %out : f16
%4283 = arith.cmpf ogt, %in, %out : f16
%4284 = arith.select %4283, %4281, %out_1640 : i64
linalg.yield %4282, %4284 : f16, i64
} -> (tensor<16x256x1xf16>, tensor<16x256x1xi64>)
%2817 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2813, %2816#0 : tensor<16x256x77xf16>, tensor<16x256x1xf16>) outs(%1208 : tensor<16x256x77xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.subf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x256x77xf16>
%2818 = linalg.generic {indexing_maps = [#map16, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2817 : tensor<16x256x77xf16>) outs(%1208 : tensor<16x256x77xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = math.exp %in : f16
linalg.yield %4280 : f16
} -> tensor<16x256x77xf16>
%2819 = linalg.fill ins(%cst_694 : f16) outs(%1158 : tensor<16x256x1xf16>) -> tensor<16x256x1xf16>
%2820 = linalg.generic {indexing_maps = [#map16, #map17], iterator_types = ["parallel", "parallel", "reduction"]} ins(%2818 : tensor<16x256x77xf16>) outs(%2819 : tensor<16x256x1xf16>) {
^bb0(%in: f16, %out: f16):
%4280 = arith.addf %in, %out : f16
linalg.yield %4280 : f16
} -> tensor<16x256x1xf16>
%2821 = linalg.generic {indexing_maps = [#map16, #map17, #map16], iterator_types = ["parallel", "parallel", "parallel"]} ins(%2818, %2820 : tensor<16x256x77xf16>, tensor<16x256x1xf16>) outs(%1208 : tensor<16x256x77xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
%4280 = arith.divf %in, %in_1640 : f16
linalg.yield %4280 : f16
} -> tensor<16x256x77xf16>
%2822 = linalg.fill ins(%cst_694 : f16) outs(%1166 : tensor<16x256x160xf16>) -> tensor<16x256x160xf16>
%2823 = linalg.batch_matmul ins(%2821, %collapsed_1314 : tensor<16x256x77xf16>, tensor<16x77x160xf16>) outs(%2822 : tensor<16x256x160xf16>) -> tensor<16x256x160xf16>
%expanded_1315 = tensor.expand_shape %2823 [[0, 1], [2], [3]] : tensor<16x256x160xf16> into tensor<2x8x256x160xf16>
%2824 = linalg.generic {indexing_maps = [#map11, #map19], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%expanded_1315 : tensor<2x8x256x160xf16>) outs(%1169 : tensor<2x256x8x160xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<2x256x8x160xf16>
%2825 = linalg.generic {indexing_maps = [#map5, #map8], iterator_types = ["parallel", "parallel"]} ins(%cst_448 : tensor<1280x1280xf16>) outs(%36 : tensor<1280x1280xf16>) {
^bb0(%in: f16, %out: f16):
linalg.yield %in : f16
} -> tensor<1280x1280xf16>
%collapsed_1316 = tensor.collapse_shape %2824 [[0, 1], [2, 3]] : tensor<2x256x8x160xf16> into tensor<512x1280xf16>
%2826 = linalg.fill ins(%cst_694 : f16) outs(%1137 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2827 = linalg.matmul ins(%collapsed_1316, %2825 : tensor<512x1280xf16>, tensor<1280x1280xf16>) outs(%2826 : tensor<512x1280xf16>) -> tensor<512x1280xf16>
%2828 = linalg.generic {indexing_maps = [#map9, #map5, #map5], iterator_types = ["parallel", "parallel"]} ins(%cst_449, %2827 : tensor<1280xf16>, tensor<512x1280xf16>) outs(%1137 : tensor<512x1280xf16>) {
^bb0(%in: f16, %in_1640: f16, %out: f16):
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment