Skip to content

Instantly share code, notes, and snippets.

View pashu123's full-sized avatar
๐Ÿ˜‡
Working from home

Prashant Kumar pashu123

๐Ÿ˜‡
Working from home
View GitHub Profile
import torch
from functorch import make_fx
from torch.nn.utils import _stateless
import torch_mlir
from torch_mlir_e2e_test.linalg_on_tensors_backends import refbackend
class Foo(torch.nn.Module):
import torch
from functorch import make_fx
from torch.nn.utils import _stateless
import torch_mlir
class Foo(torch.nn.Module):
def __init__(self):
#loc0 = loc(unknown)
module attributes {torch.debug_module_name = "forward"} {
func private @__torch__.torch.fx.graph_module.forward.__code_getter(%arg0: !torch.nn.Module<"__torch__.torch.fx.graph_module.forward"> loc(unknown)) -> !torch.str {
%1 = torch.prim.GetAttr %arg0["_code"] : !torch.nn.Module<"__torch__.torch.fx.graph_module.forward"> -> !torch.str loc(#loc0)
return %1 : !torch.str loc(#loc0)
} loc(#loc0)
func private @__torch__.torch.fx.graph_module.forward.forward(%arg0: !torch.nn.Module<"__torch__.torch.fx.graph_module.forward"> loc(unknown), %arg1: !torch.tensor {torch.type_bound = !torch.vtensor<[3,3],f32>} loc(unknown), %arg2: !torch.tensor {torch.type_bound = !torch.vtensor<[3],f32>} loc(unknown), %arg3: !torch.tensor {torch.type_bound = !torch.vtensor<[3,3],f32>} loc(unknown)) -> !torch.tuple<tensor, tensor> {
%float-1.000000e-02 = torch.constant.float -1.000000e-02 loc(#loc1)
%true_0 = torch.constant.bool true loc(#loc2)
%false = torch.constant.bool false loc(#loc3)
module attributes {torch.debug_module_name = "forward"} {
func private @__torch__.torch.fx.graph_module.forward.__code_getter(%arg0: !torch.nn.Module<"__torch__.torch.fx.graph_module.forward">) -> !torch.str {
%2 = torch.prim.GetAttr %arg0["_code"] : !torch.nn.Module<"__torch__.torch.fx.graph_module.forward"> -> !torch.str
return %2 : !torch.str
}
func private @__torch__.torch.fx.graph_module.forward.forward(%arg0: !torch.nn.Module<"__torch__.torch.fx.graph_module.forward">, %arg1: !torch.tensor {torch.type_bound = !torch.vtensor<[384],f32>}, %arg2: !torch.tensor {torch.type_bound = !torch.vtensor<[384],f32>}, %arg3: !torch.tensor {torch.type_bound = !torch.vtensor<[512,384],f32>}, %arg4: !torch.tensor {torch.type_bound = !torch.vtensor<[2,384],f32>}, %arg5: !torch.tensor {torch.type_bound = !torch.vtensor<[30522,384],f32>}, %arg6: !torch.tensor {torch.type_bound = !torch.vtensor<[384],f32>}, %arg7: !torch.tensor {torch.type_bound = !torch.vtensor<[384],f32>}, %arg8: !torch.tensor {torch.type_bo
import os
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.fx import symbolic_trace, replace_pattern
def all_reduce(inp):
dist.all_reduce(inp)
from PIL import Image
import requests
import torch
import torchvision.models as models
from torchvision import transforms
import sys
from shark.shark_runner import SharkInference
from torch.ao.quantization import get_default_qconfig
import torch.quantization.quantize_fx as quantize_fx
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from shark.shark_inference import SharkInference
torch.manual_seed(0)
tokenizer = AutoTokenizer.from_pretrained("microsoft/MiniLM-L12-H384-uncased")
class MiniLMSequenceClassification(torch.nn.Module):
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from shark.shark_inference import SharkInference
torch.manual_seed(0)
tokenizer = AutoTokenizer.from_pretrained("microsoft/MiniLM-L12-H384-uncased")
class MiniLMSequenceClassification(torch.nn.Module):
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from shark.shark_inference import SharkInference
torch.manual_seed(0)
tokenizer = AutoTokenizer.from_pretrained("microsoft/MiniLM-L12-H384-uncased")
class MiniLMSequenceClassification(torch.nn.Module):
%216 = torch.aten.linear %result0, %178, %179 : !torch.vtensor<[1,128,384],f32>, !torch.vtensor<[384,384],f32>, !torch.vtensor<[384],f32> -> !torch.vtensor<[1,128,384],f32>
%217 = torch.aten.linear %result0, %177, %3 : !torch.vtensor<[1,128,384],f32>, !torch.vtensor<[384,384],f32>, !torch.vtensor<[384],f32> -> !torch.vtensor<[1,128,384],f32>
%224 = torch.aten.linear %result0, %175, %176 : !torch.vtensor<[1,128,384],f32>, !torch.vtensor<[384,384],f32>, !torch.vtensor<[384],f32> -> !torch.vtensor<[1,128,384],f32>
%250 = torch.aten.linear %249, %173, %174 : !torch.vtensor<[1,128,384],f32>, !torch.vtensor<[384,384],f32>, !torch.vtensor<[384],f32> -> !torch.vtensor<[1,128,384],f32>
%252 = torch.aten.linear %result0_4, %169, %170 : !torch.vtensor<[1,128,384],f32>, !torch.vtensor<[1536,384],f32>, !torch.vtensor<[1536],f32> -> !torch.vtensor<[1,128,1536],f32>
%254 = torch.aten.linear %253, %167, %168 : !torch.vtensor<[1,128,1536],f32>, !torch.vtensor<[384,1536],f32>, !torch.vtensor<[384],f32>