๐
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<unknown>:0: error: invalid size -9223372036854775808 for !torch.tensor type | |
iree-compile: iree/third_party/llvm-project/mlir/include/mlir/IR/StorageUniquerSupport.h:180: static ConcreteT mlir::detail::StorageUserBase<mlir::torch::Torch::ValueTensorType, mlir::torch::Torch::BaseTensorType, mlir::torch::Torch::detail::ValueTensorTypeStorage, mlir::detail::TypeUniquer>::get(MLIRContext *, Args &&...) [ConcreteT = mlir::torch::Torch::ValueTensorType, BaseT = mlir::torch::Torch::BaseTensorType, StorageT = mlir::torch::Torch::detail::ValueTensorTypeStorage, UniquerT = mlir::detail::TypeUniquer, Traits = <>, Args = <std::optional<llvm::ArrayRef<long>> &, mlir::Type &, mlir::Attribute &>]: Assertion `succeeded( ConcreteT::verifyInvariants(getDefaultDiagnosticEmitFn(ctx), args...))' failed. | |
Please report issues to https://github.com/iree-org/iree/issues and include the crash backtrace. | |
Stack dump: | |
0. Program arguments: iree-compile --iree-hal-target-backends=llvm-cpu new_onnx.mlir -o abc.vmfb --iree-llvmcpu-target-cp |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#pipeline_layout = #hal.pipeline.layout<constants = 4, bindings = [ | |
#hal.pipeline.binding<storage_buffer> | |
]> | |
hal.executable.source public @executable { | |
hal.executable.export public @write_constants ordinal(0) layout(#pipeline_layout) attributes {workgroup_size = [1 : index, 1 : index, 1 : index]} { | |
^bb0(%arg0: !hal.device): | |
%c1 = arith.constant 1 : index | |
hal.return %c1, %c1, %c1 : index, index, index | |
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// -----// IR Dump After ConvertTorchOnnxToTorch (convert-torch-onnx-to-torch) //----- // | |
func.func @torch_jit(%arg0: !torch.vtensor<[1,64,88,88],f32>) -> !torch.vtensor<[?,256,88,88],f32> attributes {torch.onnx_meta.ir_version = 7 : si64, torch.onnx_meta.opset_version = 21 : si64, torch.onnx_meta.producer_name = "pytorch", torch.onnx_meta.producer_version = "1.12.1"} { | |
%0 = torch.vtensor.literal(dense<[[[-0.162511453, 0.196854442, -0.89627254, 0.699266493, 0.930536746]]]> : tensor<1x1x5xf32>) : !torch.vtensor<[1,1,5],f32> | |
%1 = torch.vtensor.literal(dense<0.000000e+00> : tensor<256x64x1x1xf32>) : !torch.vtensor<[256,64,1,1],f32> | |
%2 = torch.vtensor.literal(dense<"0x4684C23E7C2E86BF686622BF042F8D3F2FF0803E7CC5683F8810C9BFB750363FCE7E0DC07BCD63C0878B86BF633820BF449DBA3F88D3B0BE83C9FA3FF5A6ECBF078D44401E80D2BE524F17C01BB8823DE069453DA60F85404569F3BD599F823F0DFAA1C0CD896EBF3C98434084EF7C408067A63E4088613EAE5AA93E22BF5D3F50D6083E75EE51BF00E69BBF478287403E5C6E3FB6B11340D392C4BE4C439B3E3A22B13FCC3B4F3F34F554BD6 |
This file has been truncated, but you can view the full file.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// -----// IR Dump After ConvertTorchOnnxToTorch (convert-torch-onnx-to-torch) //----- // | |
func.func @main_graph(%arg0: !torch.vtensor<[?,?],si64>, %arg1: !torch.vtensor<[?,?],si64>, %arg2: !torch.vtensor<[?,?],si64>, %arg3: !torch.vtensor<[?,?,?],si64>, %arg4: !torch.vtensor<[4],si64>, %arg5: !torch.vtensor<[2],si64>) -> !torch.vtensor<[?,?,128,384],i1> attributes {torch.onnx_meta.ir_version = 7 : si64, torch.onnx_meta.opset_version = 21 : si64, torch.onnx_meta.producer_name = "pytorch", torch.onnx_meta.producer_version = "2.4.0"} { | |
%0 = torch.vtensor.literal(dense<0> : tensor<si64>) : !torch.vtensor<[],si64> | |
%int0 = torch.constant.int 0 | |
%int0_0 = torch.constant.int 0 | |
%1 = torch.aten.select.int %arg4, %int0, %int0_0 : !torch.vtensor<[4],si64>, !torch.int, !torch.int -> !torch.vtensor<[],si64> | |
%2 = torch.aten.item %1 : !torch.vtensor<[],si64> -> !torch.int | |
%int1 = torch.constant.int 1 | |
%3 = torch.aten.select.int %arg4, %int0, %int1 : !torch.vtensor<[4],si64>, !torch.int, !torch.int -> !torch.vtens |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module { | |
func.func @main_graph(%arg0: !torch.vtensor<[?,?],si64>, %arg1: !torch.vtensor<[?,?],si64>, %arg2: !torch.vtensor<[?,?],si64>, %arg3: !torch.vtensor<[?,?,?],si64>, %arg4: !torch.vtensor<[4],si64>, %arg5: !torch.vtensor<[2],si64>) -> !torch.vtensor<[?,?,128,384],i1> attributes {torch.onnx_meta.ir_version = 7 : si64, torch.onnx_meta.opset_version = 21 : si64, torch.onnx_meta.producer_name = "pytorch", torch.onnx_meta.producer_version = "2.4.0"} { | |
%1 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0> : tensor<si64>} : () -> !torch.vtensor<[],si64> | |
%2 = torch.operator "onnx.Pad"(%arg1, %arg4, %1) {torch.onnx.mode = "constant"} : (!torch.vtensor<[?,?],si64>, !torch.vtensor<[4],si64>, !torch.vtensor<[],si64>) -> !torch.vtensor<[?,?],si64> | |
%3 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<1> : tensor<si64>} : () -> !torch.vtensor<[],si64> | |
%4 = torch.operator "onnx.Gather"(%arg5, %3) {torch.onnx.axis = 0 : si64} : (!torch.vtensor<[2],si64>, !torch.vtensor<[],si6 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
hal.executable public @main_graph$async_dispatch_3 { | |
hal.executable.variant public @embedded_elf_x86_64 target(<"llvm-cpu", "embedded-elf-x86_64", {cpu = "znver4", cpu_features = "+prfchw,-cldemote,+avx,+aes,+sahf,+pclmul,-xop,+crc32,+xsaves,-avx512fp16,-usermsr,-sm4,-egpr,+sse4.1,+avx512ifma,+xsave,+sse4.2,-tsxldtrk,-sm3,-ptwrite,-widekl,+invpcid,+64bit,+xsavec,-avx10.1-512,+avx512vpopcntdq,+cmov,-avx512vp2intersect,+avx512cd,+movbe,-avxvnniint8,-ccmp,-amx-int8,-kl,-avx10.1-256,+evex512,-avxvnni,-rtm,+adx,+avx2,-hreset,-movdiri,-serialize,-sha512,+vpclmulqdq,+avx512vl,-uintr,-cf,+clflushopt,-raoint,-cmpccxadd,+bmi,-amx-tile,+sse,-avx10.2-256,+gfni,-avxvnniint16,-amx-fp16,-zu,-ndd,+xsaveopt,+rdrnd,+avx512f,-amx-bf16,+avx512bf16,+avx512vnni,-push2pop2,+cx8,+avx512bw,+sse3,+pku,-nf,+fsgsbase,+clzero,+mwaitx,-lwp,+lzcnt,+sha,-movdir64b,-ppx,+wbnoinvd,-enqcmd,-avx10.2-512,-avxneconvert,-tbm,-pconfig,-amx-complex,+ssse3,+cx16,+bmi2,+fma,+popcnt,-avxifma,+f16c,+avx512bitalg,+rdpru,+clwb,+mmx,+sse2,+rdseed,+avx512 |
This file has been truncated, but you can view the full file.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// -----// IR Dump After AutoInputConversionPipelinePass (iree-auto-input-conversion) //----- // | |
#map = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2)> | |
#map1 = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)> | |
module { | |
func.func @test_dispatch(%arg0: tensor<1x2x128xf32>, %arg1: tensor<1x2x48x30x30xf32>, %arg2: tensor<2x128x48x5x5xf32>) -> tensor<1x2x128x26x26xf32> { | |
%cst = arith.constant 0.000000e+00 : f32 | |
%c40896 = arith.constant 40896 : index | |
%c3720640 = arith.constant 3720640 : index | |
%c259584 = arith.constant 259584 : index | |
%c605184 = arith.constant 605184 : index |
This file has been truncated, but you can view the full file.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// -----// IR Dump After AutoInputConversionPipelinePass (iree-auto-input-conversion) //----- // | |
#map = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2)> | |
#map1 = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)> | |
module { | |
func.func @test_dispatch(%arg0: tensor<1x2x128xf32>, %arg1: tensor<1x2x48x30x30xf32>, %arg2: tensor<2x128x48x5x5xf32>) -> tensor<1x2x128x26x26xf32> { | |
%cst = arith.constant 0.000000e+00 : f32 | |
%c40896 = arith.constant 40896 : index | |
%c3720640 = arith.constant 3720640 : index | |
%c259584 = arith.constant 259584 : index | |
%c605184 = arith.constant 605184 : index |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module { | |
func.func @test_tfidfvectorizer_tf_uniandbigrams_skip5(%arg0: !torch.vtensor<[12],si32>) -> !torch.vtensor<[7],f32> attributes {torch.onnx_meta.ir_version = 4 : si64, torch.onnx_meta.opset_version = 17 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} { | |
%none = torch.constant.none | |
%0 = torch.operator "onnx.TfIdfVectorizer"(%arg0) {torch.onnx.max_gram_length = 2 : si64, torch.onnx.max_skip_count = 5 : si64, torch.onnx.min_gram_length = 1 : si64, torch.onnx.mode = "TF", torch.onnx.ngram_counts = [0 : si64, 4 : si64], torch.onnx.ngram_indexes = [0 : si64, 1 : si64, 2 : si64, 3 : si64, 4 : si64, 5 : si64, 6 : si64], torch.onnx.pool_int64s = [2 : si64, 3 : si64, 5 : si64, 4 : si64, 5 : si64, 6 : si64, 7 : si64, 8 : si64, 6 : si64, 7 : si64]} : (!torch.vtensor<[12],si32>) -> !torch.vtensor<[7],f32> | |
return %0 : !torch.vtensor<[7],f32> | |
} | |
} | |
This file has been truncated, but you can view the full file.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Args: iree-opt --pass-pipeline=builtin.module(func.func(iree-codegen-tile-and-distribute-to-workgroups-using-forall-op, cse)) --mlir-print-local-scope --split-input-file before_scf.mlir --debug | |
ImplicitTypeIDRegistry::lookupOrInsert(mlir::chlo::ChloDialect) | |
ImplicitTypeIDRegistry::lookupOrInsert(mlir::stablehlo::StablehloDialect) | |
ImplicitTypeIDRegistry::lookupOrInsert(mlir::vhlo::VhloDialect) | |
Load new dialect in Context builtin | |
ImplicitTypeIDRegistry::lookupOrInsert(mlir::ShapedType) | |
ImplicitTypeIDRegistry::lookupOrInsert(mlir::MemRefLayoutAttrInterface) | |
ImplicitTypeIDRegistry::lookupOrInsert(mlir::TypedAttr) | |
ImplicitTypeIDRegistry::lookupOrInsert(mlir::ElementsAttr) | |
ImplicitTypeIDRegistry::lookupOrInsert(mlir::DistinctAttr) |