๐
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/bin/bash | |
################################################################################ | |
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |
# See https://llvm.org/LICENSE.txt for license information. | |
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |
################################################################################ | |
# | |
# This script will install the llvm toolchain on the different | |
# Debian and Ubuntu versions |
This file has been truncated, but you can view the full file.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// -----// IR Dump After AutoInputConversionPipelinePass (iree-auto-input-conversion) //----- // | |
#map = affine_map<(d0, d1, d2) -> (d1, d2)> | |
#map1 = affine_map<(d0, d1, d2) -> (d0, d1, d2)> | |
module { | |
util.func public @matmul_broad(%arg0: tensor<?x?x3200xf32>, %arg1: tensor<8640x3200xf16>) -> tensor<?x?x8640xf32> { | |
%cst = arith.constant 0.000000e+00 : f32 | |
%c0 = arith.constant 0 : index | |
%c1 = arith.constant 1 : index | |
%dim = tensor.dim %arg0, %c0 : tensor<?x?x3200xf32> | |
%dim_0 = tensor.dim %arg0, %c1 : tensor<?x?x3200xf32> |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
func.func @fuse_multiple_users(%arg0 : tensor<?x?xf32>, | |
%arg1 : tensor<?x?xf32>) -> tensor<?x?xf32> { | |
%c0 = arith.constant 0 : index | |
%c1 = arith.constant 1 : index | |
%c2 = arith.constant 2 : index | |
%cst0 = arith.constant 0.0 : f32 | |
%M = tensor.dim %arg0, %c0 : tensor<?x?xf32> | |
%N = tensor.dim %arg1, %c1 : tensor<?x?xf32> | |
%K = tensor.dim %arg0, %c1 : tensor<?x?xf32> | |
%empty = tensor.empty(%M, %N) : tensor<?x?xf32> |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
func.func @matmul_fusion_test(%arg0 : tensor<?x?xf32>, | |
%arg1 : tensor<?x?xf32>) -> tensor<?x?xf32> { | |
%c0 = arith.constant 0 : index | |
%c1 = arith.constant 1 : index | |
%c2 = arith.constant 2 : index | |
%cst0 = arith.constant 0.0 : f32 | |
%M = tensor.dim %arg0, %c0 : tensor<?x?xf32> | |
%N = tensor.dim %arg1, %c1 : tensor<?x?xf32> | |
%K = tensor.dim %arg0, %c1 : tensor<?x?xf32> | |
%empty = tensor.empty(%M, %N) : tensor<?x?xf32> |
This file has been truncated, but you can view the full file.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// -----// IR Dump After AutoInputConversionPipeline (iree-auto-input-conversion) //----- // | |
#map = affine_map<(d0, d1, d2) -> (d1, d2)> | |
#map1 = affine_map<(d0, d1, d2) -> (d0, d1, d2)> | |
module { | |
util.func public @matmul_broad(%arg0: tensor<?x?x3200xf32>, %arg1: tensor<8640x3200xf16>) -> tensor<?x?x8640xf32> { | |
%cst = arith.constant 0.000000e+00 : f32 | |
%c0 = arith.constant 0 : index | |
%c1 = arith.constant 1 : index | |
%dim = tensor.dim %arg0, %c0 : tensor<?x?x3200xf32> | |
%dim_0 = tensor.dim %arg0, %c1 : tensor<?x?x3200xf32> |
This file has been truncated, but you can view the full file.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// -----// IR Dump After AutoInputConversionPipeline (iree-auto-input-conversion) //----- // | |
#map = affine_map<(d0, d1, d2) -> (d1, d2)> | |
#map1 = affine_map<(d0, d1, d2) -> (d0, d1, d2)> | |
module { | |
util.func public @matmul_broad(%arg0: tensor<?x?x3200xf32>, %arg1: tensor<8640x3200xf16>) -> tensor<?x?x8640xf32> { | |
%cst = arith.constant 0.000000e+00 : f32 | |
%c0 = arith.constant 0 : index | |
%c1 = arith.constant 1 : index | |
%dim = tensor.dim %arg0, %c0 : tensor<?x?x3200xf32> | |
%dim_0 = tensor.dim %arg0, %c1 : tensor<?x?x3200xf32> |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
func.func @matmul_broad_dispatch_1_set_encoding_LHS_DxDx3200() { | |
%c0 = arith.constant 0 : index | |
%c32_i64 = arith.constant 32 : i64 | |
%0 = hal.interface.constant.load layout(<push_constants = 4, sets = [<0, bindings = [<0, storage_buffer, Indirect>], flags = Indirect>]>) ordinal(0) : i32 | |
%1 = hal.interface.constant.load layout(<push_constants = 4, sets = [<0, bindings = [<0, storage_buffer, Indirect>], flags = Indirect>]>) ordinal(1) : i32 | |
%2 = hal.interface.constant.load layout(<push_constants = 4, sets = [<0, bindings = [<0, storage_buffer, Indirect>], flags = Indirect>]>) ordinal(2) : i32 | |
%3 = hal.interface.constant.load layout(<push_constants = 4, sets = [<0, bindings = [<0, storage_buffer, Indirect>], flags = Indirect>]>) ordinal(3) : i32 | |
%4 = arith.extui %0 : i32 to i64 | |
%5 = arith.extui %1 : i32 to i64 | |
%6 = arith.shli %5, %c32_i64 : i64 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#map = affine_map<(d0, d1, d2) -> (d1, d2)> | |
#map1 = affine_map<(d0, d1, d2) -> (d0, d1, d2)> | |
#map2 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d3)> | |
#map3 = affine_map<(d0, d1, d2, d3) -> (d0, d2, d3)> | |
#map4 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)> | |
module { | |
util.func public @matmul_broad(%arg0: !hal.buffer_view, %arg1: !hal.buffer_view) -> !hal.buffer_view attributes {iree.abi.stub, iree.reflection = {iree.abi.declaration = "sync func @matmul_broad(%input0: tensor<?x?x3200xf32>, %input1: tensor<8640x3200xf16>) -> (%output0: tensor<?x?x8640xf32>)"}} { | |
%cst = arith.constant 0.000000e+00 : f32 | |
%0 = hal.buffer_view.dim<%arg0 : !hal.buffer_view>[0] : index | |
%1 = hal.buffer_view.dim<%arg0 : !hal.buffer_view>[1] : index |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#map = affine_map<(d0) -> (d0)> | |
#map1 = affine_map<(d0, d1, d2) -> (d0, d1, d2)> | |
module { | |
func.func @main_graph_dispatch_47_elementwise_64x56x56_f32(%arg0: tensor<200704xi8>, %arg1: tensor<64x56x56xf32>) -> tensor<64x56x56xf32> { | |
%cst = arith.constant 0.000000e+00 : f32 | |
%cst_0 = arith.constant -1.280000e+02 : f32 | |
%cst_1 = arith.constant 1.270000e+02 : f32 | |
%cst_2 = arith.constant 1.562500e-02 : f32 | |
%0 = tensor.empty() : tensor<64x56x56xf32> | |
%1 = tensor.empty() : tensor<200704xf32> |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
func.func @matmul_accumulate_DYNxDYNxf16_times_DYNxDYNxf16_into_DYNxDYNxf16(%lhs: tensor<?x?xf16>, %rhs: tensor<?x?xf16>, %acc: tensor<?x?xf16>) -> tensor<?x?xf16> { | |
%result = linalg.matmul ins(%lhs, %rhs: tensor<?x?xf16>, tensor<?x?xf16>) outs(%acc: tensor<?x?xf16>) -> tensor<?x?xf16> | |
return %result: tensor<?x?xf16> | |
} | |
func.func @matmul_accumulate_1x1xf16_times_1x1xf16_into_1x1xf16(%lhs: tensor<1x1xf16>, %rhs: tensor<1x1xf16>, %acc: tensor<1x1xf16>) -> tensor<1x1xf16> { | |
%result = linalg.matmul ins(%lhs, %rhs: tensor<1x1xf16>, tensor<1x1xf16>) outs(%acc: tensor<1x1xf16>) -> tensor<1x1xf16> | |
return %result: tensor<1x1xf16> |