๐
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#matmul_config = #iree_codegen.lowering_config<tile_sizes = [[1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [1, 1, 0, 16, 16, 0], [0, 0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0]]> | |
#executable_target_embedded_elf_x86_64_ = #hal.executable.target<"llvm-cpu", "embedded-elf-x86_64", {cpu = "znver4", cpu_features = "+avx512f", native_vector_size = 64 : index, target_triple = "x86_64-unknown-unknown-eabi-elf"}> | |
func.func @mmt4d_bias_relu_fusion_dispatch_0_generic_DxDx16x16_f32() attributes {hal.executable.target = #executable_target_embedded_elf_x86_64_} { | |
%c0 = arith.constant 0 : index | |
%c32_i64 = arith.constant 32 : i64 | |
%cst = arith.constant 0.000000e+00 : f32 | |
%0 = hal.interface.constant.load[0] : i32 | |
%1 = hal.interface.constant.load[1] : i32 | |
%2 = hal.interface.constant.load[2] : i32 | |
%3 = hal.interface.constant.load[3] : i32 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
%46 = linalg.batch_mmt4d {lowering_config = #iree_codegen.lowering_config<tile_sizes = [[1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 0, 16, 16, 0], [0, 0, 0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0]]>} ins(%41, %42 : tensor<?x?x3200x16x1xf32>, tensor<?x540x3200x16x1xf16>) outs(%45 : tensor<?x?x540x16x16xf32>) -> tensor<?x?x540x16x16xf32> | |
util.func public @matmul_broad(%arg0: !hal.buffer_view, %arg1: !hal.buffer_view) -> !hal.buffer_view attributes {iree.abi.stub, iree.reflection = {iree.abi.declaration = "sync func @matmul_broad(%input0: tensor<?x?x3200xf32>, %input1: tensor<8640x3200xf16>) -> (%output0: tensor<?x?x8640xf32>)"}} { | |
%cst = arith.constant 0.000000e+00 : f16 | |
%c1 = arith.constant 1 : index | |
%c0 = arith.constant 0 : index | |
%cst_0 = arith.constant 0.000000e+00 : f32 | |
%0 = hal.buffer_view.dim<%arg0 : !hal.buffer_view>[0] : index | |
%1 = hal.buffer_view.dim<%arg0 : !hal.buffer_view>[1] : index | |
%2 = hal.tensor.import %arg0 "input0" : !hal.buffer_view -> tensor<?x?x |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
util.func public @matmul_broad(%arg0: !hal.buffer_view, %arg1: !hal.buffer_view) -> !hal.buffer_view attributes {iree.abi.stub, iree.reflection = {iree.abi.declaration = "sync func @matmul_broad(%input0: tensor<?x?x3200xf32>, %input1: tensor<8640x3200xf16>) -> (%output0: tensor<?x?x8640xf32>)"}} { | |
%cst = arith.constant 0.000000e+00 : f16 | |
%c1 = arith.constant 1 : index | |
%c0 = arith.constant 0 : index | |
%cst_0 = arith.constant 0.000000e+00 : f32 | |
%0 = hal.buffer_view.dim<%arg0 : !hal.buffer_view>[0] : index | |
%1 = hal.buffer_view.dim<%arg0 : !hal.buffer_view>[1] : index | |
%2 = hal.tensor.import %arg0 "input0" : !hal.buffer_view -> tensor<?x?x3200xf32>{%0, %1} | |
%3 = hal.tensor.import %arg1 "input1" : !hal.buffer_view -> tensor<8640x3200xf16> | |
%4 = tensor.empty(%0) : tensor<?x8640x3200xf16> |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
//util.func public @matmul_broad(%arg0: !hal.buffer_view, %arg1: !hal.buffer_view) -> !hal.buffer_view attributes {iree.abi.stub, iree.reflection = {iree.abi.declaration = "sync func @matmul_broad(%input0: tensor<?x?x3200xf32>, %input1: tensor<8640x3200xf16>) -> (%output0: tensor<?x?x8640xf32>)"}} { | |
// %cst = arith.constant 0.000000e+00 : f32 | |
// %0 = hal.buffer_view.dim<%arg0 : !hal.buffer_view>[0] : index | |
// %1 = hal.buffer_view.dim<%arg0 : !hal.buffer_view>[1] : index | |
// %2 = hal.tensor.import %arg0 "input0" : !hal.buffer_view -> tensor<?x?x3200xf32>{%0, %1} | |
// %3 = hal.tensor.import %arg1 "input1" : !hal.buffer_view -> tensor<8640x3200xf16> | |
// %4 = tensor.empty() : tensor<540x3200x16x1xf16> | |
// %pack = tensor.pack %3 outer_dims_perm = [0, 1] inner_dims_pos = [0, 1] inner_tiles = [16, 1] into %4 : tensor<8640x3200xf16> -> tensor<540x3200x16x1xf16> | |
// %collapsed = tensor.collapse_shape %pack [[0], [1], [2, 3]] : tensor<540x3200x16x1xf16> into tensor<540x3200x16xf16> | |
// %5 = tensor.empty(%0) : tensor< |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module attributes {torch.debug_module_name = "SumModule"} { | |
ml_program.global private mutable @global_seed(dense<0> : tensor<i64>) : tensor<i64> | |
func.func @forward(%arg0: tensor<1048576xf32>) -> tensor<f32> { | |
%cst = arith.constant 0.000000e+00 : f32 | |
%0 = tensor.empty() : tensor<f32> | |
%1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<f32>) -> tensor<f32> | |
%2 = linalg.generic {indexing_maps = [affine_map<(d0) -> (d0)>, affine_map<(d0) -> ()>], iterator_types = ["reduction"]} ins(%arg0 : tensor<1048576xf32>) outs(%1 : tensor<f32>) { | |
^bb0(%in: f32, %out: f32): | |
%3 = arith.addf %in, %out : f32 | |
linalg.yield %3 : f32 |
This file has been truncated, but you can view the full file.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// -----// IR Dump After AssignTargetDevicesPass (iree-hal-assign-target-devices) //----- // | |
#executable_target_embedded_elf_x86_64_ = #hal.executable.target<"llvm-cpu", "embedded-elf-x86_64", {cpu = "generic", cpu_features = "", data_layout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-i128:128-f80:128-n8:16:32:64-S128", native_vector_size = 16 : i64, target_triple = "x86_64-unknown-unknown-eabi-elf"}> | |
#map = affine_map<(d0, d1, d2) -> (d1, d2)> | |
#map1 = affine_map<(d0, d1, d2) -> (d0, d1, d2)> | |
#device_target_local = #hal.device.target<"local", [#executable_target_embedded_elf_x86_64_]> | |
module attributes {hal.device.targets = [#device_target_local]} { | |
util.func public @matmul_broad(%arg0: tensor<?x?x3200xf32>, %arg1: tensor<8640x3200xf16>) -> tensor<?x?x8640xf32> { | |
%cst = arith.constant 0.000000e+00 : f32 | |
%c0 = arith.constant 0 : index | |
%c1 = arith.constant 1 : index |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
def compare_arrays(expected, computed): | |
# Check if the shapes of the arrays match | |
if expected.shape != computed.shape: | |
print("Arrays have different shapes.") | |
return | |
# Find where mismatches occur (including handling NaNs) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
False | |
False | |
False | |
Mismatch at index (np.int64(0), np.int64(2), np.int64(1)): golden=-1.6139899492263794, iree=-0.0 | |
Mismatch at index (np.int64(0), np.int64(2), np.int64(9)): golden=-1.1718499660491943, iree=-0.0 | |
Mismatch at index (np.int64(0), np.int64(2), np.int64(10)): golden=-1.594499945640564, iree=-0.0 | |
Mismatch at index (np.int64(0), np.int64(2), np.int64(11)): golden=-1.9860199689865112, iree=-0.0 | |
Mismatch at index (np.int64(0), np.int64(2), np.int64(18)): golden=-1.1132500171661377, iree=-0.0 | |
Mismatch at index (np.int64(0), np.int64(2), np.int64(19)): golden=-2.1459200382232666, iree=-0.0 | |
Mismatch at index (np.int64(0), np.int64(2), np.int64(20)): golden=-1.3908900022506714, iree=-0.0 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
//func.func @softmax(%arg0: tensor<2x24x1178x1178xf32>) -> tensor<2x24x1178x1178xf32> { | |
// %c0 = arith.constant 0 : index | |
// %0 = tensor.empty() : tensor<2x24x1178x1178xf32> | |
// %1 = linalg.softmax dimension(3) ins(%arg0 : tensor<2x24x1178x1178xf32>) outs(%0 : tensor<2x24x1178x1178xf32>) -> tensor<2x24x1178x1178xf32> | |
// return %1 : tensor<2x24x1178x1178xf32> | |
//} | |
func.func @softmax(%arg0: tensor<2x24x1178x1178xf32>) -> tensor<2x24x1178xf32> { | |
%4 = tensor.empty() : tensor<2x24x1178xf32> | |
%cst = arith.constant -3.40282347E+38 : f32 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
func.func @matmul_broad_dispatch_2_batch_mmt4d_DxDx540x3200x16x16x1_f32xf16xf32() attributes {translation_info = #iree_codegen.translation_info<Mmt4dTilingExpert>} { | |
%c1 = arith.constant 1 : index | |
%c3200 = arith.constant 3200 : index | |
%c540 = arith.constant 540 : index | |
%c55296000 = arith.constant 55296000 : index | |
%c0 = arith.constant 0 : index | |
%c32_i64 = arith.constant 32 : i64 | |
%cst = arith.constant 0.000000e+00 : f32 | |
%0 = hal.interface.constant.load[0] : i32 | |
%1 = hal.interface.constant.load[1] : i32 |