Last active
November 14, 2018 08:32
-
-
Save pochi/735afe406dbe0a56db33d23d3d86c921 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# TODO: Print loss and accuracy per epch | |
import argparse | |
import tensorflow as tf | |
import numpy as np | |
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Dropout, UpSampling2D, Concatenate | |
from tensorflow.keras.models import Model | |
from tensorflow.keras.optimizers import Adam | |
from tensorflow.keras.preprocessing import image as image_util | |
def _unet_model(): | |
inputs = Input((256, 256, 3)) | |
conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(inputs) | |
conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv1) | |
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) | |
conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1) | |
conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv2) | |
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) | |
conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool2) | |
conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv3) | |
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) | |
conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool3) | |
conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv4) | |
drop4 = Dropout(0.5)(conv4) | |
pool4 = MaxPooling2D(pool_size=(2, 2))(drop4) | |
conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool4) | |
conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv5) | |
drop5 = Dropout(0.5)(conv5) | |
up6 = Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(drop5)) | |
merge6 = Concatenate(axis=3)([drop4,up6]) | |
conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge6) | |
conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv6) | |
up7 = Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv6)) | |
merge7 = Concatenate(axis=3)([conv3,up7]) | |
conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge7) | |
conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv7) | |
up8 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv7)) | |
merge8 = Concatenate(axis=3)([conv2,up8]) | |
conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge8) | |
conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv8) | |
up9 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv8)) | |
merge9 = Concatenate(axis=3)([conv1,up9]) | |
conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge9) | |
conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9) | |
conv9 = Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9) | |
conv10 = Conv2D(1, 1, activation = 'sigmoid')(conv9) | |
model = Model(inputs = inputs, outputs = conv10) | |
model.compile(optimizer = Adam(lr = 1e-4), loss = 'binary_crossentropy', metrics = ['accuracy']) | |
model_dir = "./model" | |
return tf.keras.estimator.model_to_estimator(keras_model = model, model_dir = model_dir) | |
def img_input_fn(train_filenames): | |
train_filename, segmentation_filename = ("./img/0test.png", "./img/0label.png") | |
train_img = np.expand_dims(image_util.img_to_array(image_util.load_img(train_filename, target_size=(256, 256), grayscale=True)), axis=0) | |
valid_img = np.expand_dims(image_util.img_to_array(image_util.load_img(segmentation_filename, target_size=(256, 256), grayscale=True)), axis=0) | |
print(train_img.shape) | |
print(valid_img.shape) | |
return train_img, valid_img | |
def main(argv): | |
args = parser.parse_args(argv[1:]) | |
estimator = _unet_model() | |
train_filenames = ["./img/0test.png"] | |
#logging_hook = tf.train.LoggingTensorHook({"loss": loss, "accuracy": accuracy}, every_n_iter=1) | |
#estimator = tf.estimator.add_metrics(estimator, logging_hook) | |
train_spec = tf.estimator.TrainSpec(input_fn = lambda: img_input_fn(train_filenames), | |
max_steps=100) | |
valid_spec = tf.estimator.EvalSpec(input_fn = lambda: img_input_fn(train_filenames), steps=1) | |
tf.estimator.train_and_evaluate(estimator, train_spec, valid_spec) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--batch-size', default=100, type=int, help='batch size') | |
parser.add_argument('--train_steps', default=1000, type=int, help='number of train steps') | |
tf.logging.set_verbosity(tf.logging.INFO) | |
tf.app.run(main) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment