Install aspell
first. For example on debian-based system:
apt-get install aspell
Check all markdown files inside src
directory:
char buff[6] = {'h', 'e', 'l', 'l', 'o', '\0'}; | |
/* or */ | |
char *buff = "hello"; /* \0 implicitly appended */ | |
/* or */ | |
char buff[] = "hello"; |
# http://stackoverflow.com/questions/23281050/makefile-warning-warning-file-main-cpp-has-modification-time-2-1e04-s-in-th | |
# http://stackoverflow.com/questions/4210042/exclude-directory-from-find-command | |
find . -path ./.git -prune -o -type f -exec touch {} + | |
NEW_VERSION=206179d | |
OLD_VERSION=cd5726e | |
if [ ! -f "${NEW_VERSION}.tar.gz" ]; then | |
wget https://api.github.com/repos/facebookresearch/fasttext/tarball/${NEW_VERSION} -O ${NEW_VERSION}.tar.gz | |
else | |
echo "fastText: ${NEW_VERSION}.tar.gz exists" | |
fi | |
if [ ! -d "facebookresearch-fastText-${OLD_VERSION}" ]; then |
/* The ziggurat method for RNOR and REXP | |
Combine the code below with the main program in which you want | |
normal or exponential variates. Then use of RNOR in any expression | |
will provide a standard normal variate with mean zero, variance 1, | |
while use of REXP in any expression will provide an exponential variate | |
with density exp(-x),x>0. | |
Before using RNOR or REXP in your main, insert a command such as | |
zigset(86947731 ); | |
with your own choice of seed value>0, rather than 86947731. | |
(If you do not invoke zigset(...) you will get all zeros for RNOR and REXP.) |
// file: whitespace_tokenizer.rs | |
use std::env; | |
use std::process; | |
use std::fs::File; | |
use std::io::BufReader; | |
use std::io::Read; | |
fn main() { | |
let args: Vec<String> = env::args().collect(); | |
if args.len() != 2 { |
import tensorflow as tf | |
import sys | |
import os | |
def create_graph(pattern): | |
print 'pattern:', pattern | |
graph = tf.Graph() | |
with graph.as_default(): | |
# Initializer | |
tf.variables_initializer(tf.global_variables(), name='init') |
(function() { | |
var width = 320; | |
var height = 0; | |
var streaming = false; | |
var video = null; | |
var canvas = null; | |
var photo = null; | |
var startbutton = null; |
# Convolutional layer 1 | |
with tf.name_scope('conv1'): | |
W = tf.Variable( | |
tf.truncated_normal( | |
shape=( | |
CONV1_FILTER_SIZE, | |
CONV1_FILTER_SIZE, | |
NUM_CHANNELS, | |
CONV1_FILTER_COUNT), | |
dtype=tf.float32, |
def read_images(data_dir): | |
pattern = os.path.join(data_dir, '*.png') | |
filenames = tf.train.match_filenames_once(pattern, name='list_files') | |
queue = tf.train.string_input_producer( | |
filenames, | |
num_epochs=NUM_EPOCHS, | |
shuffle=True, | |
name='queue') | |