Last active
February 24, 2024 00:46
-
-
Save rafapereirabr/9a36c2e5ff04aa285fa3 to your computer and use it in GitHub Desktop.
Create Flow Map in R using ggplot2
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
## This gist shows how to create Flow Maps in R using ggplot2. | |
## source: This is based on different bits of code from other with amazing R skills: | |
@ceng_l : http://web.stanford.edu/~cengel/cgi-bin/anthrospace/great-circles-on-a-recentered-worldmap-in-ggplot | |
@3wen : http://egallic.fr/maps-with-r/ | |
@spatialanalysis : http://spatialanalysis.co.uk/2012/06/mapping-worlds-biggest-airlines/ | |
@freakonometrics : http://freakonometrics.hypotheses.org/48184 | |
# Libraries | |
library(maps) | |
library(geosphere) | |
library(dplyr) | |
library(ggplot2) | |
library(rworldmap) | |
library(plyr) | |
library(data.table) | |
library(ggthemes) | |
# Get World map | |
worldMap <- getMap() | |
mapworld_df <- fortify( worldMap ) | |
# Read data on airports and flights | |
airports <- read.csv("http://www.stanford.edu/~cengel/cgi-bin/anthrospace/wp-content/uploads/2012/03/airports.csv", as.is=TRUE, header=TRUE) | |
flights <- read.csv("http://www.stanford.edu/~cengel/cgi-bin/anthrospace/wp-content/uploads/2012/03/PEK-openflights-export-2012-03-19.csv", as.is=TRUE, header=TRUE) | |
# get airport locations | |
airport_locations <- airports[, c("IATA","longitude", "latitude")] | |
# aggregate number of flights (frequency of flights per pair) | |
flights.ag <- ddply(flights, c("From","To"), function(x) count(x$To)) | |
# Link airport lat long to origin and destination | |
OD <- left_join(flights.ag, airport_locations, by=c("From"="IATA") ) | |
OD <- left_join(OD, airport_locations, by=c("To"="IATA") ) | |
OD$id <-as.character(c(1:nrow(OD))) #create and id for each pair | |
##### Two Simple Maps ##### | |
# 1. Using straight lines | |
ggplot() + | |
geom_polygon(data= mapworld_df, aes(long,lat, group=group), fill="gray30") + | |
geom_segment(data = OD, aes(x = longitude.x, y = latitude.x, xend = longitude.y, yend = latitude.y, color=freq), | |
arrow = arrow(length = unit(0.01, "npc"))) + | |
scale_colour_distiller(palette="Reds", name="Frequency", guide = "colorbar") + | |
coord_equal() | |
# 2. Using Curved Lines | |
ggplot() + | |
geom_polygon(data= mapworld_df, aes(long,lat, group=group), fill="gray30") + | |
geom_curve(data = OD, aes(x = longitude.x, y = latitude.x, xend = longitude.y, yend = latitude.y, color=freq), | |
curvature = -0.2, arrow = arrow(length = unit(0.01, "npc"))) + | |
scale_colour_distiller(palette="Reds", name="Frequency", guide = "colorbar") + | |
coord_equal() | |
##### A more professional map #### | |
# Using shortest route between airports considering the spherical curvature of the planet | |
# get location of Origin and destinations airports | |
setDT(OD) # set OD as a data.table for faster data manipulation | |
beijing.loc <- OD[ From== "PEK", .(longitude.x, latitude.x)][1] # Origin | |
dest.loc <- OD[ , .(longitude.y, latitude.y)] # Destinations | |
# calculate routes between Beijing (origin) and other airports (destinations) | |
routes <- gcIntermediate(beijing.loc, dest.loc, 100, breakAtDateLine=FALSE, addStartEnd=TRUE, sp=TRUE) | |
class(routes) # SpatialLines object | |
# Convert a SpatialLines object into SpatialLinesDataFrame, so we can fortify and use it in ggplot | |
# create empty data frate | |
ids <- data.frame() | |
# fill data frame with IDs for each line | |
for (i in (1:length(routes))) { | |
id <- data.frame(routes@lines[[i]]@ID) | |
ids <- rbind(ids, id) } | |
colnames(ids)[1] <- "ID" # rename ID column | |
# convert SpatialLines into SpatialLinesDataFrame using IDs as the data frame | |
routes <- SpatialLinesDataFrame(routes, data = ids, match.ID = T) | |
# Fortify routes (convert to data frame) +++ join attributes | |
routes_df <- fortify(routes, region= "ID") # convert into something ggplot can plot | |
gcircles <- left_join(routes_df, OD, by= ("id")) | |
head(gcircles) | |
### Recenter #### | |
center <- 115 # positive values only - US centered view is 260 | |
# shift coordinates to recenter great circles | |
gcircles$long.recenter <- ifelse(gcircles$long < center - 180 , gcircles$long + 360, gcircles$long) | |
# shift coordinates to recenter worldmap | |
worldmap <- map_data ("world") | |
worldmap$long.recenter <- ifelse(worldmap$long < center - 180 , worldmap$long + 360, worldmap$long) | |
### Function to regroup split lines and polygons | |
# takes dataframe, column with long and unique group variable, returns df with added column named group.regroup | |
RegroupElements <- function(df, longcol, idcol){ | |
g <- rep(1, length(df[,longcol])) | |
if (diff(range(df[,longcol])) > 300) { # check if longitude within group differs more than 300 deg, ie if element was split | |
d <- df[,longcol] > mean(range(df[,longcol])) # we use the mean to help us separate the extreme values | |
g[!d] <- 1 # some marker for parts that stay in place (we cheat here a little, as we do not take into account concave polygons) | |
g[d] <- 2 # parts that are moved | |
} | |
g <- paste(df[, idcol], g, sep=".") # attach to id to create unique group variable for the dataset | |
df$group.regroup <- g | |
df | |
} | |
### Function to close regrouped polygons | |
# takes dataframe, checks if 1st and last longitude value are the same, if not, inserts first as last and reassigns order variable | |
ClosePolygons <- function(df, longcol, ordercol){ | |
if (df[1,longcol] != df[nrow(df),longcol]) { | |
tmp <- df[1,] | |
df <- rbind(df,tmp) | |
} | |
o <- c(1: nrow(df)) # rassign the order variable | |
df[,ordercol] <- o | |
df | |
} | |
# now regroup | |
gcircles.rg <- ddply(gcircles, .(id), RegroupElements, "long.recenter", "id") | |
worldmap.rg <- ddply(worldmap, .(group), RegroupElements, "long.recenter", "group") | |
# close polys | |
worldmap.cp <- ddply(worldmap.rg, .(group.regroup), ClosePolygons, "long.recenter", "order") # use the new grouping var | |
# Flat map | |
ggplot() + | |
geom_polygon(data=worldmap.cp, aes(long.recenter,lat,group=group.regroup), size = 0.2, fill="#f9f9f9", color = "grey65") + | |
geom_line(data= gcircles.rg, aes(long.recenter,lat,group=group.regroup, color=freq), size=0.4, alpha= 0.5) + | |
scale_colour_distiller(palette="Reds", name="Frequency", guide = "colorbar") + | |
theme_map()+ | |
ylim(-60, 90) + | |
coord_equal() | |
# Spherical Map | |
ggplot() + | |
geom_polygon(data=worldmap.cp, aes(long.recenter,lat,group=group.regroup), size = 0.2, fill="#f9f9f9", color = "grey65") + | |
geom_line(data= gcircles.rg, aes(long.recenter,lat,group=group.regroup, color=freq), size=0.4, alpha= 0.5) + | |
scale_colour_distiller(palette="Reds", name="Frequency", guide = "colorbar") + | |
# Spherical element | |
scale_y_continuous(breaks = (-2:2) * 30) + | |
scale_x_continuous(breaks = (-4:4) * 45) + | |
coord_map("ortho", orientation=c(61, 90, 0)) | |
# Any ideas on how to color the oceans ? :) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
then simply add at the end of your ggplot()
for example: