-
-
Save rg3915/5fb3a2e7338115bc92e82b7a9a2b372b to your computer and use it in GitHub Desktop.
Para transformar Query do Django em DataFrame:
df = pd.DataFrame(list(User.objects.all().values()))
Pra mostrar somente algumas colunas:
df[['id', 'email']]
Transformando todos os campos do DataFrame num jSON
df.T.apply(dict).tolist()
Renomeando colunas
df.rename(columns={'old_name': 'new_name'})
Selecionando as colunas de 10 em 10
df.iloc[:, :10]
com transposição
df.T.iloc[:10]
Novo df com algumas colunas.
new = old.filter(['A','B','D'], axis=1)
Como não inserir chaves com valor nulo no dicionário:
df.T.apply(lambda x: dict(x.dropna())).tolist()
Retornando os valores cujo tamanho da string seja maior que...
df[df['foo'].str.len() > 50]['foo']
Mostrando o tamanho de cada célula
df[df['foo'].str.len() > 50]['foo'].str.len()
Mostrando o tamanho de cada célula da coluna
df['foo_len'] = df['foo'].apply(len)
df[['foo_len', 'foo']]
Ou
df['foo'].str.len()
Suponha que você tenha Cliente
e Obra
.
Pegando o ID do Cliente que está em Obra e trocando pelo nome do Cliente que está no outro DataFrame.
# JSON do Cliente com IDCliente e Cliente
dict_cliente = df_cliente[['IDCliente', 'Cliente']].T.apply(dict).tolist()
[
{'IDCliente': 288, 'Cliente': 'Cliente Um'},
{'IDCliente': 1, 'Cliente': 'Cliente Dois'},
{'IDCliente': 959, 'Cliente': 'Cliente Três'},
]
Montando o dicionário que será usado como busca de cada Cliente a partir do seu ID.
_dict_cliente = {}
for item in dict_cliente:
_dict_cliente[item['IDCliente']] = item['Cliente']
_dict_cliente
{
288: 'Cliente Um',
1: 'Cliente Dois',
959: 'Cliente Três',
}
A partir desse dicionário fazemos a busca no outro DataFrame.
for row in df.itertuples():
nome_cliente = _dict_cliente.get(row.IDCliente)
print(row.IDCliente, nome_cliente)
288 Cliente Um
1 Cliente Dois
959 Cliente Três
Retornando o valor máximo agrupado por ano.
df.groupby(['Ano'])['NumeroOrcamento'].max()
df.reset_index()
Verificando data vazia:
for row in df.itertuples():
if row.DataOrcamento is pd.NaT:
print('Vazio')
else:
print(row.DataOrcamento)
Definindo vários fillna
diferentes por coluna:
values = {'last_name': '', 'occupation': '', 'age': 0}
df = df.fillna(value=values)
df.head()
Se tiver problema com liblzma
, faça um downgrade do Pandas para pandas==0.24.2
.
https://stackoverflow.com/a/57115325
Retorna o tamanho do maior objeto de cada coluna.
dict_sizes = {}
for col in df.columns:
try:
print(f'{col} max length: {df[col].map(len).max()}\n')
dict_sizes[col] = df[col].map(len).max()
except Exception as e:
raise e
dict_sizes
dtype example
df['estoque'] =df['estoque'].fillna(0).astype(int)
Pandas Dataframe df to Django
https://www.laurivan.com/save-pandas-dataframe-as-django-model/
Produto.objects.bulk_create(
Produto(**item) for item in df.to_dict('records')
)
Definindo os tipos das colunas com dtype
dict_types_annot = {
'produto': str,
'ncm': str,
'preco': float,
'estoque': 'Int64',
}
# Define os tipos das colunas
dff = df.astype(dict_types_annot, errors='ignore')
# Troca 'nan' por None e float por None.
dff = dff.replace({'nan': None, float('nan'): None})
dff.to_dict('records')
Produto.objects.bulk_create(
Produto(**item) for item in dff.to_dict('records')
)
Intersecção de dataframes
import pandas as pd
import numpy as np
import datetime
from random import randint
df1 = pd.DataFrame({
'letters': ['A', 'B', 'C', 'D', 'E', 'J', 'K', 'M'],
'B': np.random.randint(0, 10, 8),
})
df1
df2 = pd.DataFrame({
'letters': ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'U', 'Z'],
'B': np.random.randint(0, 10, 26),
})
df2
# Retorna o que tem de comum nos dois dataframes.
pd.merge(df1, df2, how='inner', on='fruits')
# Retorna o que tem de comum, considerando o df1.
pd.merge(df1, df2, how='left', on='fruits')
# Retorna o que tem de comum, considerando o df2.
pd.merge(df1, df2, how='right', on='fruits')
Código que substitui da célula [6] em diante do
separe_email.ipynb
:Um detalhe é a falta de um índice único dos registros. Então, supondo o índice automático decorrente da importação do arquivo Excel como ID válido, esse ID é o usado no "join" (
merge
).