-
-
Save rizplate/1c3d3556a82e144c1d6bb5b8951f17cc to your computer and use it in GitHub Desktop.
incremental learning lightgbm
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
""" | |
@author: goraj | |
""" | |
import lightgbm as lgbm | |
from sklearn.datasets import load_digits | |
import numpy as np | |
from sklearn.model_selection import train_test_split | |
from sklearn.metrics import roc_auc_score | |
def iterative_ds(params, X_train, X_test, y_train, y_test): | |
# initialize model | |
ss = 5 | |
estimator = None | |
for iteration, x in enumerate(range(0, X_train.shape[0] - ss, ss)): | |
indices = list(range(x, x + ss)) | |
estimator = lgbm.train(params, | |
init_model=estimator, | |
train_set=lgbm.Dataset(X_train[indices], y_train[indices]), | |
keep_training_booster=True, | |
num_boost_round=5) | |
auc = roc_auc_score(y_test, estimator.predict(X_test) >= 0.5) | |
if iteration % 15 == 0: | |
print('iteration: {} auc: {}'.format(iteration, auc)) | |
def iterative_subset(params, X_train, X_test, y_train, y_test): | |
# using subset | |
ss = 5 | |
estimator = None | |
dset = lgbm.Dataset(X_train, y_train, free_raw_data=False) | |
for iteration, x in enumerate(range(0, X_train.shape[0] - ss, ss)): | |
indices = list(range(x, x + ss)) | |
estimator = lgbm.train(params, | |
init_model=estimator, | |
train_set=dset.subset(indices), | |
keep_training_booster=True, | |
num_boost_round=5) | |
auc = roc_auc_score(y_test, estimator.predict(X_test) >= 0.5) | |
if iteration % 15 == 0: | |
print('iteration: {} auc: {}'.format(iteration, auc)) | |
if __name__ == '__main__': | |
d = load_digits() | |
xs = d['data'] | |
ys = d['target'] | |
indices = np.where((ys == 1) | (ys == 0)) | |
X = xs[indices] | |
y = ys[indices] | |
X_train, X_test, y_train, y_test = train_test_split(X, | |
y, | |
test_size=0.20, | |
random_state=42) | |
params = { | |
'boosting_type': 'gbdt', | |
'objective': 'binary', | |
'learning_rate': 0.01, | |
'num_leaves': 35, | |
'metric': 'auc', | |
'is_unbalance': False, | |
'seed': 1024, | |
'verbosity': -1, | |
'min_data': 1, | |
'min_data_in_bin': 1, | |
'free_raw_data': False | |
} | |
# works | |
iterative_ds(params, X_train, X_test, y_train, y_test) | |
# does not work | |
iterative_subset(params, X_train, X_test, y_train, y_test) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment