Created
March 6, 2025 19:22
-
-
Save roboguy13/7bae678a466c8359c43217e49198c77f to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
open import Relation.Binary.PropositionalEquality | |
open import Data.Product | |
open ≡-Reasoning | |
module MagmaMonoid where | |
Associative : ∀ {A} → (A → A → A) → Set | |
Associative _<>_ = | |
∀ a b c → | |
(a <> b) <> c ≡ a <> (b <> c) | |
LeftId : ∀ {A} → (A → A → A) → A → Set | |
LeftId _<>_ unit = | |
∀ a → unit <> a ≡ a | |
RightId : ∀ {A} → (A → A → A) → A → Set | |
RightId _<>_ unit = | |
∀ a → a <> unit ≡ a | |
Magma : Set → Set | |
Magma A = A → A → A | |
module MorphismProps {A B} (_<>[A]_ : Magma A) (_<>[B]_ : Magma B) where | |
Magma-morphism : (A → B) → Set | |
Magma-morphism f = | |
∀ a b → | |
f (a <>[A] b) ≡ f a <>[B] f b | |
preserves-LeftId : ∀ {f : A → B} {unitA} → | |
Magma-morphism f → | |
LeftId _<>[A]_ unitA → | |
∀ a → | |
f unitA <>[B] f a ≡ f a | |
preserves-LeftId {f} {unitA} f-morph p a = | |
begin | |
(f unitA <>[B] f a) ≡⟨ sym (f-morph unitA a) ⟩ | |
f (unitA <>[A] a) ≡⟨ cong f (p a) ⟩ | |
f a | |
∎ | |
preserves-RightId : ∀ {f : A → B} {unitA} → | |
Magma-morphism f → | |
RightId _<>[A]_ unitA → | |
∀ a → | |
f a <>[B] f unitA ≡ f a | |
preserves-RightId {f} {unitA} f-morph p a = | |
begin | |
(f a <>[B] f unitA) ≡⟨ sym (f-morph a unitA) ⟩ | |
f (a <>[A] unitA) ≡⟨ cong f (p a) ⟩ | |
f a | |
∎ | |
preserves-assoc : ∀ {f : A → B} → | |
Magma-morphism f → | |
Associative _<>[A]_ → | |
∀ a b c → | |
(f a <>[B] f b) <>[B] f c | |
≡ | |
f a <>[B] (f b <>[B] f c) | |
preserves-assoc {f} f-morph assoc a b c = | |
begin | |
(f a <>[B] f b) <>[B] f c ≡⟨ cong₂ _<>[B]_ (sym (f-morph a b)) refl ⟩ | |
f (a <>[A] b) <>[B] f c ≡⟨ sym (f-morph (a <>[A] b) c) ⟩ | |
f ((a <>[A] b) <>[A] c) ≡⟨ sym (cong f (sym (assoc a b c))) ⟩ | |
f (a <>[A] (b <>[A] c)) ≡⟨ f-morph a (b <>[A] c) ⟩ | |
(f a <>[B] f (b <>[A] c)) ≡⟨ cong₂ _<>[B]_ refl (f-morph b c) ⟩ | |
f a <>[B] (f b <>[B] f c) | |
∎ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment