Skip to content

Instantly share code, notes, and snippets.

open import Relation.Binary.PropositionalEquality
open import Data.Product
open ≡-Reasoning
module MagmaMonoid where
Associative : ∀ {A} → (A → A → A) → Set
Associative _<>_ =
∀ a b c →
-- Idea:
-- (1) Define a language of normal forms: Nf
-- (2) Define translations to and from the normal form language: from-Nf, to-Nf
-- (3) Show that normal forms are equal if and only if they are equal in the original language: ==→~, ~→==
-- (4) Prove the theorem about normal form language: thm′
-- (5) Reflect that proof back into a statement about the original language: thm
open import Data.Nat
open import Data.Nat.Properties
open import Relation.Binary.PropositionalEquality renaming (subst to Eq-subst)
open import Data.Nat
open import Data.Nat.Properties
open import Relation.Binary.PropositionalEquality
open import Data.Product
open import Data.Sum
open import Relation.Nullary
module MonoidNat3 where
data Expr : Set where
module NumericDSL
where
---- Example GHCi session:
-- ghci> example (10 :: Int)
-- 130
-- ghci> example (10 :: Expr)
-- Mul (Add (Lit 10) (Lit 3)) (Lit 10)
{-# LANGUAGE DeriveFunctor, GADTs, UndecidableInstances #-}
module FreeExample where
import Control.Monad
import Data.Void -- Empty type
-- ghci> ppr example1
-- "Add 1 (Sub 2 3)"
example1 :: Expr Void
--
-- Each interpretation will have a type of the form `Expr a -> F a`.
-- These would be a natural transformations, except that Expr is not quite a functor in this case.
--
{-# LANGUAGE GADTs #-}
module ExprInterp where
data Expr a where
open import Data.Nat
open import Data.Sum
open import Data.Product
open import Relation.Nullary
module PreservationCounterexample
where
data Type : Set where
Boolean : Type
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE ImpredicativeTypes #-}
{-# LANGUAGE RankNTypes #-}
import Control.Lens
import Control.Applicative
data Expr
= Lit Int
| Add Expr Expr
@roboguy13
roboguy13 / Cmd.hs
Last active January 8, 2025 03:34
{-# LANGUAGE GADTs #-}
import Control.Monad
-- Note that Cmd values are perfectly "pure" values. There's nothing here that
-- makes them impure.
data Cmd a where
PutStr :: String -> Cmd ()
PutStrLn :: String -> Cmd ()
ReadLn :: Cmd Int
Inductive Tree (A : Type) :=
| tip : A -> Tree A
| bin : Tree A -> Tree A -> Tree A.
Fixpoint flatten {A} (t : Tree A) : list A :=
match t with
| tip _ x => x :: nil
| bin _ l r => flatten l ++ flatten r
end.