Created
March 3, 2025 17:45
-
-
Save roboguy13/f150f75aeefa8082307d97766f935f22 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
open import Data.Nat | |
open import Data.Nat.Properties | |
open import Relation.Binary.PropositionalEquality | |
open import Data.Product | |
open import Data.Sum | |
open import Relation.Nullary | |
module MonoidNat3 where | |
data Expr : Set where | |
add : Expr → Expr → Expr | |
iota : ℕ → Expr | |
data _==_ : Expr → Expr → Set where | |
==-assoc : ∀ {a b c} → | |
add a (add b c) == add (add a b) c | |
==-comm : ∀ {a b} → | |
add a b == add b a | |
==-iota : ∀ {k l sum} → | |
sum ≡ k + l → | |
add (iota k) (iota l) == iota sum | |
==-iota0 : ∀ {a} → | |
add (iota 0) a == a | |
==-refl : ∀ {a} → a == a | |
==-sym : ∀ {a b} → a == b → b == a | |
==-trans : ∀ {a b c} → | |
a == b → | |
b == c → | |
a == c | |
==-add1 : ∀ {a a′ b} → | |
a == a′ → | |
add a b == add a′ b | |
==-add2 : ∀ {a b b′} → | |
b == b′ → | |
add a b == add a b′ | |
eval : Expr → ℕ | |
eval (add a b) = eval a + eval b | |
eval (iota x) = x | |
==eval : ∀ {a b} → | |
a == b → | |
eval a ≡ eval b | |
==eval {.(add a (add b c))} {.(add (add a b) c)} (==-assoc {a} {b} {c}) = sym (+-assoc (eval a) (eval b) (eval c)) | |
==eval {.(add a b)} {.(add b a)} (==-comm {a} {b}) = +-comm (eval a) (eval b) | |
==eval {.(add (iota _) (iota _))} (==-iota refl) = refl | |
==eval {.(add (iota 0) b)} {b} ==-iota0 = refl | |
==eval {a} {.a} ==-refl = refl | |
==eval {a} {b} (==-sym p) = sym (==eval p) | |
==eval {a} {b} (==-trans p p₁) = trans (==eval p) (==eval p₁) | |
==eval {.(add a b)} {.(add _ b)} (==-add1 {a} {b = b} p) = cong (_+ (eval b)) (==eval p) | |
==eval {.(add a b)} {.(add a _)} (==-add2 {a} {b} p) = cong (eval a +_) (==eval p) | |
eval==′ : ∀ {a} → | |
a == iota (eval a) | |
eval==′ {add a a₁} = ==-trans (==-trans (==-add2 eval==′) (==-add1 eval==′)) (==-iota refl) | |
eval==′ {iota x} = ==-refl | |
eval== : ∀ {a b} → | |
eval a ≡ eval b → | |
a == b | |
eval== {b = b} p = ==-trans eval==′ (subst (λ z → iota z == b) (sym p) (==-sym eval==′)) | |
thm : ∀ {a b} → | |
add a (iota 1) == add b (iota 1) → | |
a == b | |
thm {a} {b} p = | |
let | |
eq : eval a + 1 ≡ eval b + 1 | |
eq = ==eval p | |
eq′ : 1 + eval a ≡ 1 + eval b | |
eq′ = trans (+-comm 1 (eval a)) (trans eq (+-comm (eval b) 1)) | |
eq2 : eval a ≡ eval b | |
eq2 = +-cancelˡ-≡ 1 eq′ | |
in | |
eval== eq2 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment