Skip to content

Instantly share code, notes, and snippets.

@rolux
Last active December 22, 2023 09:44
Show Gist options
  • Save rolux/48f1da6cf2bc6ca5833dbacbf852b348 to your computer and use it in GitHub Desktop.
Save rolux/48f1da6cf2bc6ca5833dbacbf852b348 to your computer and use it in GitHub Desktop.
# git clone https://github.com/NVlabs/stylegan2
import os
import numpy as np
from scipy.interpolate import interp1d
from scipy.io import wavfile
import matplotlib.pyplot as plt
import PIL.Image
import moviepy.editor
import dnnlib
import dnnlib.tflib as tflib
import pretrained_networks
audio = {}
fps = 60
# https://www.google.com/search?q=death+grips+black+google+download
for mp3_filename in [f for f in os.listdir('data') if f.endswith('.mp3')]:
mp3_filename = f'data/{mp3_filename}'
wav_filename = mp3_filename[:-4] + '.wav'
if not os.path.exists(wav_filename):
audio_clip = moviepy.editor.AudioFileClip(mp3_filename)
audio_clip.write_audiofile(wav_filename, fps=44100, nbytes=2, codec='pcm_s16le')
track_name = os.path.basename(wav_filename)[15:-5]
rate, signal = wavfile.read(wav_filename)
signal = np.mean(signal, axis=1) # to mono
signal = np.abs(signal)
seed = signal.shape[0]
duration = signal.shape[0] / rate
frames = int(np.ceil(duration * fps))
samples_per_frame = signal.shape[0] / frames
audio[track_name] = np.zeros(frames, dtype=signal.dtype)
for frame in range(frames):
start = int(round(frame * samples_per_frame))
stop = int(round((frame + 1) * samples_per_frame))
audio[track_name][frame] = np.mean(signal[start:stop], axis=0)
audio[track_name] /= max(audio[track_name])
for track in sorted(audio.keys()):
plt.figure(figsize=(8, 3))
plt.title(track)
plt.plot(audio[track])
plt.savefig(f'data/{track}.png')
network_pkl = 'gdrive:networks/stylegan2-ffhq-config-f.pkl'
_G, _D, Gs = pretrained_networks.load_networks(network_pkl)
Gs_kwargs = dnnlib.EasyDict()
Gs_kwargs.output_transform = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
Gs_kwargs.randomize_noise = False
Gs_syn_kwargs = dnnlib.EasyDict()
Gs_syn_kwargs.output_transform = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
Gs_syn_kwargs.randomize_noise = False
Gs_syn_kwargs.minibatch_size = 4
noise_vars = [var for name, var in Gs.components.synthesis.vars.items() if name.startswith('noise')]
w_avg = Gs.get_var('dlatent_avg')
def get_ws(n, frames, seed):
filename = f'data/ws_{n}_{frames}_{seed}.npy'
if not os.path.exists(filename):
src_ws = np.random.RandomState(seed).randn(n, 512)
ws = np.empty((frames, 512))
for i in range(512):
# FIXME: retarded
x = np.linspace(0, 3*frames, 3*len(src_ws), endpoint=False)
y = np.tile(src_ws[:, i], 3)
x_ = np.linspace(0, 3*frames, 3*frames, endpoint=False)
y_ = interp1d(x, y, kind='quadratic', fill_value='extrapolate')(x_)
ws[:, i] = y_[frames:2*frames]
np.save(filename, ws)
else:
ws = np.load(filename)
return ws
def mix_styles(wa, wb, ivs):
w = np.copy(wa)
for i, v in ivs:
w[i] = wa[i] * (1 - v) + wb[i] * v
return w
def normalize_vector(v):
return v * np.std(w_avg) / np.std(v) + np.mean(w_avg) - np.mean(v)
def render_frame(t):
global base_index
frame = np.clip(np.int(np.round(t * fps)), 0, frames - 1)
base_index += base_speed * audio['Instrumental'][frame]**2
base_w = base_ws[int(round(base_index)) % len(base_ws)]
base_w = np.tile(base_w, (18, 1))
psi = 0.5 + audio['FX'][frame] / 2
base_w = w_avg + (base_w - w_avg) * psi
mix_w = np.tile(mix_ws[frame], (18, 1))
mix_w = w_avg + (mix_w - w_avg) * 0.75
ranges = [range(0, 4), range(4, 8), range(8, 18)]
values = [audio[track][frame] for track in ['Drums', 'E Drums', 'Synth']]
w = mix_styles(base_w, mix_w, zip(ranges, values))
w += mouth_open * audio['Vocal'][frame] * 1.5
image = Gs.components.synthesis.run(np.stack([w]), **Gs_syn_kwargs)[0]
image = PIL.Image.fromarray(image).resize((size, size), PIL.Image.LANCZOS)
return np.array(image)
size = 1080
seconds = int(np.ceil(duration))
resolution = 10
base_frames = resolution * frames
base_ws = get_ws(seconds, base_frames, seed)
base_speed = base_frames / sum(audio['Instrumental']**2)
base_index = 0
mix_ws = get_ws(seconds, frames, seed + 1)
# https://rolux.org/media/stylegan2/vectors/mouth_ratio.npy
mouth_open = normalize_vector(-np.load('data/mouth_ratio.npy'))
mp4_filename = 'data/Culture Shock.mp4'
video_clip = moviepy.editor.VideoClip(render_frame, duration=duration)
audio_clip_i = moviepy.editor.AudioFileClip('data/Culture Shock (Instrumental).wav')
audio_clip_v = moviepy.editor.AudioFileClip('data/Culture Shock (Vocal).wav')
audio_clip = moviepy.editor.CompositeAudioClip([audio_clip_i, audio_clip_v])
video_clip = video_clip.set_audio(audio_clip)
video_clip.write_videofile(mp4_filename, fps=fps, codec='libx264', audio_codec='aac', bitrate='8M')
@rolux
Copy link
Author

rolux commented Jan 21, 2020

@zncook: See my comment above!

@aisdn
Copy link

aisdn commented Jan 21, 2020

@zncook: See my comment above!

Hi. Where download these audio files? Culture Shock (Drums).mp3, Culture Shock (E Drums).mp3, etc.

can I customize these audio files?

@rolux
Copy link
Author

rolux commented Jan 21, 2020

@zncook: as it says above: https://www.google.com/search?q=death+grips+black+google+download

Of course, you can provide your own files, split them with https://www.google.com/search?q=spleeter, etc.

@nikitatishin5
Copy link

what python you use? stylegun2 is for 3.6 or later but PIL is for 2.7 or less

@doppiaeffe
Copy link

what python you use? stylegun2 is for 3.6 or later but PIL is for 2.7 or less

@nikitatishin5 install pillow instead of PIL and use python 3.6

@doppiaeffe
Copy link

if I want to combine another parameter to the drums for example, how should I do it? I already downloaded other vectors but I can't seem to make it work properly

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment