Skip to content

Instantly share code, notes, and snippets.

@rowanc1
Created January 9, 2014 17:52
Show Gist options
  • Save rowanc1/8338665 to your computer and use it in GitHub Desktop.
Save rowanc1/8338665 to your computer and use it in GitHub Desktop.
Generates a synthetic seismogram for a simple 1-D layered model.
import numpy as np
import matplotlib.pyplot as plt
def syntheticSeismogram(v, rho, d):
"""
function syntheticSeismogram()
syntheicSeismogram generates a synthetic seismogram for a simple 1-D
layered model.
The wavelet options are based on (Ryan, 1994):
Ricker:
Ormsby:
Klauder:
Butterworth:
Lindsey Heagy
[email protected]
November 30, 2013
v = np.array([350, 1000, 2000]) # Velocity of each layer (m/s)
rho = np.array([1700, 2000, 2500]) # Density of each layer (kg/m^3)
d = np.array([0, 100, 200]) # Position of top of each layer (m)
"""
# Ensure that these are float numpy arrays
v, rho, d = np.array(v, dtype=float), np.array(rho, dtype=float), np.array(d, dtype=float)
usingT = False
nlayer = len(v) # number of layers
# Check that the number of layers match
assert len(rho) == nlayer, 'Number of layer densities must match number of layer velocities'
assert len(d) == nlayer, 'Number of layer tops must match the number of layer velocities'
# compute necessary parameters
Z = rho*v # acoustic impedance
R = np.diff(Z)/(Z[:-1] + Z[1:]) # reflection coefficients
twttop = 2*d[1:]/v[:-1]
twttop = np.cumsum(twttop)
# create model logs
resolution = 100
dpth = np.linspace(0,np.max(d)+np.max(np.diff(d)),resolution)
nd = len(dpth)
rholog = np.zeros(nd)
vlog = np.zeros(nd)
zlog = np.zeros(nd)
rseries = np.zeros(nd)
twti = np.zeros(nd)
for i in range(nlayer):
di = (dpth >= d[i])
rholog[di] = rho[i]
vlog[di] = v[i]
zlog[di] = Z[i]
if i < nlayer-1:
di = np.logical_and(di, dpth < d[i+1])
ir = np.arange(resolution)[di][-1:][0] #find(di, 1, 'last' )
if usingT:
if i == 0:
rseries[ir] = R[i]
else:
rseries[ir] = R[i]*np.prod(1-R[i-1]**2)
else:
rseries[ir] = R[i]
if i > 0:
twti[di] = twttop[i-1]
t = 2.0*dpth/vlog + twti
# make wavelet
# Wavelet type and Frequency (Hz):
wavtyp = 'RICKER'
wavf = np.array([10])
dtwav = np.abs(np.min(np.diff(t)))
twav = np.arange(-2.0/np.min(wavf), 2.0/np.min(wavf), dtwav)
# Get source wavelet
wav = {'RICKER':getRicker, 'ORMSBY':getOrmsby, 'KLAUDER':getKlauder}[wavtyp](wavf,twav)
# create synthetic seismogram
tseis = np.arange(0,np.max(t),dtwav) + np.min(twav)
tr = t[np.abs(rseries) > 0]
rseriesconv = np.zeros(len(tseis))
for i in range(len(tr)):
index = np.abs(tseis - tr[i]).argmin()
rseriesconv[index] = R[i]
seis = np.convolve(wav,rseriesconv)
tseis = np.min(twav)+dtwav*np.arange(len(seis))
index = np.logical_and(tseis >= 0, tseis <= np.max(t))
tseis = tseis[index]
seis = seis[index]
##
plt.figure(1)
# Plot Density
plt.subplot(151)
plt.plot(rholog,dpth,linewidth=2)
plt.title('Density')
# xlim([min(rholog) max(rholog)] + [-1 1]*0.1*[max(rholog)-min(rholog)])
# ylim([min(dpth),max(dpth)])
# set(gca,'Ydir','reverse')
plt.grid()
plt.subplot(152)
plt.plot(vlog,dpth,linewidth=2)
plt.title('Velocity')
# xlim([min(vlog) max(vlog)] + [-1 1]*0.1*[max(vlog)-min(vlog)])
# ylim([min(dpth),max(dpth)])
# set(gca,'Ydir','reverse')
plt.grid()
plt.subplot(153)
plt.plot(zlog,dpth,linewidth=2)
plt.title('Acoustic Impedance')
# xlim([min(zlog) max(zlog)] + [-1 1]*0.1*[max(zlog)-min(zlog)])
# ylim([min(dpth),max(dpth)])
# set(gca,'Ydir','reverse')
plt.grid()
plt.subplot(154)
plt.plot(rseries,dpth,linewidth=2) #,'marker','none'
plt.title('Reflectivity Series');
# set(gca,'cameraupvector',[-1, 0, 0]);
plt.grid()
# set(gca,'ydir','reverse');
plt.subplot(155)
plt.plot(t,dpth,linewidth=2);
plt.title('Depth-Time');
# plt.xlim([np.min(t), np.max(t)] + [-1, 1]*0.1*[np.max(t)-np.min(t)]);
# plt.ylim([np.min(dpth),np.max(dpth)]);
# set(gca,'Ydir','reverse');
plt.grid()
##
plt.figure(2)
# plt.subplot(141)
# plt.plot(dpth,t,linewidth=2);
# title('Time-Depth');
# ylim([min(t), max(t)] + [-1 1]*0.1*[max(t)-min(t)]);
# xlim([min(dpth),max(dpth)]);
# set(gca,'Ydir','reverse');
# plt.grid()
plt.subplot(132)
# plt.plot(rseriesconv,tseis,linewidth=2) #,'marker','none'
plt.title('Reflectivity Series')
# set(gca,'cameraupvector',[-1, 0, 0])
plt.grid()
plt.subplot(131)
plt.plot(wav,twav,linewidth=2)
plt.title('Wavelet')
plt.grid()
# set(gca,'ydir','reverse')
plt.subplot(133)
plt.plot(seis,tseis,linewidth=2)
plt.grid()
# set(gca,'ydir','reverse')
plt.show()
pi = np.pi
def getRicker(f,t):
assert len(f) == 1, 'Ricker wavelet needs 1 frequency as input'
f = f[0]
pift = pi*f*t
wav = (1 - 2*pift**2)*np.exp(-pift**2)
return wav
def getOrmsby(f,t):
assert len(f) == 4, 'Ormsby wavelet needs 4 frequencies as input'
f = np.sort(f) #Ormsby wavelet frequencies must be in increasing order
pif = pi*f
den1 = pif[3] - pif[2]
den2 = pif[1] - pif[0]
term1 = (pif[3]*np.sinc(pif[3]*t))**2 - (pif[2]*np.sinc(pif[2]))**2
term2 = (pif[1]*np.sinc(pif[1]*t))**2 - (pif[0]*np.sinc(pif[0]))**2
wav = term1/den1 - term2/den2;
return wav
def getKlauder(f,t,T=5.0):
assert len(f) == 2, 'Klauder wavelet needs 2 frequencies as input'
k = np.diff(f)/T
f0 = np.sum(f)/2.0
wav = np.real(np.sin(pi*k*t*(T-t))/(pi*k*t)*np.exp(2*pi*1j*f0*t))
return wav
if __name__ == '__main__':
d = [0, 100, 200] # Position of top of each layer (m)
v = [350, 1000, 2000] # Velocity of each layer (m/s)
rho = [1700, 2000, 2500] # Density of each layer (kg/m^3)
syntheticSeismogram(v, rho, d)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment