Last active
February 10, 2018 19:18
-
-
Save saeedesmaili/eb8fe1d151c033ae3edd46dab142c5a8 to your computer and use it in GitHub Desktop.
Basic analysis of MovieLens dataset
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
users_columns = ['user_id', 'gender', 'age', 't', 'zip'] | |
df_users = pd.read_table('users.dat', sep='::', header=None, names=users_columns, engine='python') | |
ratings_columns = ['user_id', 'movie_id', 'rating', 'timestamp'] | |
df_ratings = pd.read_table('ratings.dat', sep='::', header=None, names=ratings_columns, engine='python') | |
movies_columns = ['movie_id', 'title', 'genres'] | |
df_movies = pd.read_table('movies.dat', sep='::', header=None, names=movies_columns, engine='python') | |
df_users.head() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
df_merged = pd.merge(pd.merge(df_ratings, df_users), df_movies) | |
df_users.age.min() | |
# 1 | |
df_users[df_users.age == 1].user_id.count() | |
# 222 | |
df_users[df_users.age == 1].user_id.count() / df_users.user_id.count() | |
# 0.036754966887417216 | |
df_users.age.unique() | |
# array([ 1, 56, 25, 45, 50, 35, 18]) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
df_mean_ratings = df_merged.pivot_table('rating', index='title', columns='gender', aggfunc='mean') | |
ratings_by_title = df_merged.groupby('title').size() | |
active_titles = ratings_by_title.index[ratings_by_title >= 200] | |
df_mean_ratings = df_mean_ratings.loc[active_titles] | |
top_female_ratings = df_mean_ratings.sort_values(by='F', ascending=False) | |
top_male_ratings = df_mean_ratings.sort_values(by='M', ascending=False) | |
df_mean_ratings['diff'] = df_mean_ratings['M'] - df_mean_ratings['F'] | |
sorted_by_diff = df_mean_ratings.sort_values(by='diff') | |
sorted_by_diff[::-1].head() | |
rating_std_by_title = df_merged.groupby('title')['rating'].std() | |
rating_std_by_title = rating_std_by_title.loc[active_titles] | |
rating_std_by_title.sort_values(ascending=False).head(10) | |
# title | |
# Plan 9 from Outer Space (1958) 1.455998 | |
# Texas Chainsaw Massacre, The (1974) 1.332448 | |
# Dumb & Dumber (1994) 1.321333 | |
# Blair Witch Project, The (1999) 1.316368 | |
# Natural Born Killers (1994) 1.307198 | |
# Idle Hands (1999) 1.298439 | |
# Transformers: The Movie, The (1986) 1.292917 | |
# Very Bad Things (1998) 1.280074 | |
# Tank Girl (1995) 1.277695 | |
# Hellraiser: Bloodline (1996) 1.271939 | |
# Name: rating, dtype: float64 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment