Mentors:
- Morgan Roff
- Sayak Paul
- jaeyounkim
This is a summary of my GSoC 2021 project. In this project, I tried to produce text embedding modules trained on underrepresented languages like Arabic and Swahili and publish them on tfhub.dev.
| import torch | |
| from diffusers import FluxPipeline | |
| from torch import nn | |
| class ModelOffloaderV2: | |
| def __init__(self, model: nn.Module, record_stream: bool = False): | |
| # move model to pinned memory. keep a model copy in CPU pinned memory. | |
| for p in model.parameters(): | |
| p.data = p.data.cpu().pin_memory() |
| # Copyright 2022 Google LLC. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| # Author: Maithra Raghu <[email protected]> | |
| def compute_distance_matrix(patch_size, num_patches, length): | |
| """Helper function to compute distance matrix.""" | |
| distance_matrix = np.zeros((num_patches, num_patches)) |
| # Copyright 2021 Google LLC. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| import kfp | |
| import json | |
| import time | |
| from google.cloud import bigquery | |
| from google.cloud.exceptions import NotFound | |
| from kfp.v2.google.client import AIPlatformClient | |
| client = bigquery.Client() |
| import functools | |
| import numpy as np | |
| import tensorflow.compat.v1 as tf | |
| from tensorflow.python.tpu import tpu_function | |
| BATCH_NORM_DECAY = 0.9 | |
| BATCH_NORM_EPSILON = 1e-5 |
To be posted in: https://forums.fast.ai/c/fastai-users/fastai-v2/
Title: Proposed workflow to compare & monitor models using WandbCallback
Content:
Hi,
I’ve been working on WandbCallback for the past few months (with a lot of help from @sgugger) and I'm very excited to show how it works!
| def get_classification_report(y_test, y_pred): | |
| '''Source: https://stackoverflow.com/questions/39662398/scikit-learn-output-metrics-classification-report-into-csv-tab-delimited-format''' | |
| from sklearn import metrics | |
| report = metrics.classification_report(y_test, y_pred, output_dict=True) | |
| df_classification_report = pd.DataFrame(report).transpose() | |
| df_classification_report = df_classification_report.sort_values(by=['f1-score'], ascending=False) | |
| return df_classification_report |
First: install the CLI program for your distribution: https://cloud.google.com/sdk/install
Modify accordingly:
export REGION='us-central1'
export ZONE='us-central1-f'
export PROJECT_NAME='proj'