Last active
March 29, 2018 14:25
-
-
Save sboisson/7b5347ae2fbdbb919db0ef471e53d262 to your computer and use it in GitHub Desktop.
Kalman filter
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class SingleStateKalmanFilter(object): | |
def __init__(self, A, B, C, x, P, Q, R): | |
self.A = A # Process dynamics | |
self.B = B # Control dynamics | |
self.C = C # Measurement dynamics | |
self.current_state_estimate = x # Current state estimate | |
self.current_prob_estimate = P # Current probability of state estimate | |
self.Q = Q # Process covariance | |
self.R = R # Measurement covariance | |
def current_state(self): | |
return self.current_state_estimate | |
def step(self, control_input, measurement): | |
# Prediction step | |
predicted_state_estimate = self.A * self.current_state_estimate + self.B * control_input | |
predicted_prob_estimate = (self.A * self.current_prob_estimate) * self.A + self.Q | |
# Observation step | |
innovation = measurement - self.C * predicted_state_estimate | |
innovation_covariance = self.C * predicted_prob_estimate * self.C + self.R | |
# Update step | |
kalman_gain = predicted_prob_estimate * self.C * 1 / float(innovation_covariance) | |
self.current_state_estimate = predicted_state_estimate + kalman_gain * innovation | |
# eye(n) = nxn identity matrix. | |
self.current_prob_estimate = (1 - kalman_gain * self.C) * predicted_prob_estimate |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
https://en.wikipedia.org/wiki/Kalman_filter