Oh sunrise, you must be so lonely.
Hardly a soul spends time with you
before you coalesce into the day.
Your sister, sunset, is the Hollywood star
everyone knows. Yet sunrise, you are
just a hometown hero for early risers.
prior_version = 3.3 | |
library_path = .libPaths()[1] | |
library_path = substr(library_path, 1, nchar(library_path)-3) | |
old_library_path=paste0(library_path, prior_version) | |
old_packages = list.files(old_library_path) | |
install.packages(old_packages) |
#Create a new file | |
sudo fallocate -l 4G /swapfile | |
#RW for root only | |
sudo chmod 600 /swapfile | |
sudo mkswap /swapfile | |
sudo swapon /swapfile | |
#check swap |
#Use dplyr inside a function with arbitray column names | |
#The dots stuff is from the internal workings of dplyr | |
#Don't forget the _ at the end of the group by. | |
#Other function also have the _ variation with the .dots argument available, | |
#but when I first made this in early 2016 not all of them did. | |
my_function=function(original_df, variables){ | |
dots=lapply(variables, as.symbol) | |
summarized_data = original_data %>% | |
group_by_(.dots = dots ) %>% | |
summarize(freq=sum(freq)) %>% |
library(dplyr) | |
library(tidyr) | |
shrub_data<-read.csv("~/dplyrLesson/shrub_volume_experiment.csv") | |
######################## | |
#some basics | |
####################### | |
#ordering rows! | |
#no more using shrub_data=shrub_data[order(shrub_data$site),] |
> path.expand('~') | |
[1] "C:/Users/shawntaylor/Documents" | |
> normalizePath(path.expand('~')) | |
[1] "C:\\Users\\shawntaylor\\Documents" | |
> wd = getwd() | |
> wd | |
[1] "C:/Users/shawntaylor/Documents/portalPredictions" | |
> path.expand(wd) | |
[1] "C:/Users/shawntaylor/Documents/portalPredictions" | |
> normalizePath(path.expand(wd)) |
Here is the projection for these shapefiles in a proj4string format, as defined in https://www.fs.fed.us/nrs/atlas/littlefia/albers_prj.txt
'+proj=aea +lat_1=38 +lat_2=42 +lat_0=40 +lon_0=-82 +x_0=0 +y_0=0 +ellps=clrk66 +units=m +no_defs'
library(lubridate) | |
library(dplyr) | |
#################################################################################### | |
#' Download downscaled climate forecast data | |
#' | |
#' Individual climate models available are are c('CFSv2','CMC1','CMC2','GFDL-FLOR','GFDL','NASA','NCAR'), | |
#' 'ENSMEAN' is the mean of all models. | |
#' lead_time is the months into the future to obtain forecasts. Max of 7 | |
#' Default lat and lon are for Portal, AZ |
library(tidyverse) | |
library(cowplot) | |
######################### | |
# Get data | |
zipped_files = c("1997_daily.csv.zip", "1998_daily.csv.zip", "1999_daily.csv.zip", "2000_daily.csv.zip", "2001_daily.csv.zip", "2002_daily.csv.zip", | |
"2003_daily.csv.zip", "2004_daily.csv.zip", "2005_daily.csv.zip", "2006_daily.csv.zip", "2007_daily.csv.zip", "2008_daily.csv.zip", | |
"2009_daily.csv.zip", "2010_daily.csv.zip", "2011_daily.csv.zip", "2012_daily.csv.zip", "2013_daily.zip", "2014_daily.zip", | |
"2015_daily.zip", "2016_daily.zip", "2017_daily.zip", "2018_daily.zip","2019_daily.zip","2020_daily.zip") | |
data_folder = 'fawn_data/' |