Created
May 11, 2020 18:38
-
-
Save seabbs/5a9a22950357d569c482535a12645c2c to your computer and use it in GitHub Desktop.
Test memory leak
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Packages ----------------------------------------------------------------- | |
require(data.table, quietly = TRUE) | |
require(future, quietly = TRUE) | |
## Require for data and nowcasting | |
# require(EpiNow, quietly = TRUE) | |
# require(NCoVUtils, quietly = TRUE) | |
## Required for forecasting | |
# require(future.apply, quietly = TRUE) | |
# require(fable, quietly = TRUE) | |
# require(fabletools, quietly = TRUE) | |
# require(feasts, quietly = TRUE) | |
# require(urca, quietly = TRUE) | |
# Get cases --------------------------------------------------------------- | |
NCoVUtils::reset_cache() | |
cases <- NCoVUtils::get_ecdc_cases() | |
cases <- NCoVUtils::format_ecdc_data(cases) | |
cases <- data.table::setDT(cases)[!is.na(region)][, | |
`:=`(local = cases, imported = 0)][, cases := NULL] | |
cases <- data.table::melt(cases, measure.vars = c("local", "imported"), | |
variable.name = "import_status", | |
value.name = "confirm") | |
## Remove regions with data issues | |
cases <- cases[!region %in% c("Faroe Islands", "Sao Tome and Principe", "Tajikistan")] | |
cases <- cases[1:2000] | |
# Get linelist ------------------------------------------------------------ | |
linelist <- | |
data.table::fread("https://raw.githubusercontent.com/epiforecasts/NCoVUtils/master/data-raw/linelist.csv") | |
delays <- linelist[!is.na(date_onset_symptoms)][, | |
.(report_delay = as.numeric(lubridate::dmy(date_confirmation) - | |
as.Date(lubridate::dmy(date_onset_symptoms))))] | |
delays <- delays$report_delay | |
# Set up cores ----------------------------------------------------- | |
if (!interactive()){ | |
options(future.fork.enable = TRUE) | |
} | |
future::plan("multiprocess", | |
gc = TRUE, earlySignal = TRUE) | |
# Fit the reporting delay ------------------------------------------------- | |
delay_defs <- EpiNow::get_dist_def(delays, | |
bootstraps = 10, | |
samples = 50) | |
# Fit the incubation period ----------------------------------------------- | |
## Mean delay | |
exp(EpiNow::covid_incubation_period[1, ]$mean) | |
## Get incubation defs | |
incubation_defs <- EpiNow::lognorm_dist_def(mean = EpiNow::covid_incubation_period[1, ]$mean, | |
mean_sd = EpiNow::covid_incubation_period[1, ]$mean_sd, | |
sd = EpiNow::covid_incubation_period[1, ]$sd, | |
sd_sd = EpiNow::covid_incubation_period[1, ]$sd_sd, | |
max_value = 30, samples = 50) | |
# future::plan("multiprocess", workers = future::availableCores(), | |
# gc = TRUE, earlySignal = TRUE) | |
future::plan("sequential", earlySignal = TRUE, gc = TRUE) | |
# Run pipeline ---------------------------------------------------- | |
EpiNow::regional_rt_pipeline( | |
cases = cases, | |
delay_defs = delay_defs, | |
incubation_defs = incubation_defs, | |
target_folder = "national", | |
case_limit = 60, | |
horizon = 14, | |
nowcast_lag = 8, | |
approx_delay = TRUE, | |
report_forecast = TRUE, | |
forecast_model = function(...) { | |
EpiSoon::fable_model(model = fabletools::combination_model(fable::RW(y ~ drift()), fable::ETS(y), | |
fable::NAIVE(y), | |
cmbn_args = list(weights = "inv_var")), ...) | |
} | |
) | |
future::plan("sequential") | |
# Summarise results ------------------------------------------------------- | |
EpiNow::regional_summary(results_dir = "national", | |
summary_dir = "national-summary", | |
target_date = "latest", | |
region_scale = "Country", | |
csv_region_label = "country", | |
log_cases = TRUE) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi @adhusch - still a work in progress unfortunately though I think getting there. Any help with the code would be much appreciated at any time. Being new to valgrind I didn't find the output particularly helpful in identifying the code areas in R that were causing problems and I have not been able to find anything on how to do this - anything on this would be great.