With Python
Dr. Yves J. Hilpisch | The Python Quants & The AI Machine
Python for Quant Finance Meetup, London, 16. November 2022
(short link to this Gist: http://bit.ly/pqf_risk)
from pandas import * | |
from datetime import * | |
import pdb as pdb | |
df = DataFrame.from_csv('aapl_1-2012_5min.csv') | |
dayCount=0 | |
rangeHigh = -1 | |
rangeLow = 9999 | |
openDayRangeDict = {} | |
getRange = 1 |
With Python
Dr. Yves J. Hilpisch | The Python Quants & The AI Machine
Python for Quant Finance Meetup, London, 16. November 2022
(short link to this Gist: http://bit.ly/pqf_risk)
#include <glm/matrix.hpp> | |
class Frustum | |
{ | |
public: | |
Frustum() {} | |
// m = ProjectionMatrix * ViewMatrix | |
Frustum(glm::mat4 m); |
#!/bin/bash | |
### steps #### | |
# verify the system has a cuda-capable gpu | |
# download and install the nvidia cuda toolkit and cudnn | |
# setup environmental variables | |
# verify the installation | |
### | |
### to verify your gpu is cuda enable check |
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from datetime import timedelta | |
def generate_stock_equity(start_date, end_date): | |
num_days = (end_date - start_date).days + 1 | |
changes = np.random.randint(low=-150, high=150, size=num_days) |
#%% | |
import random | |
import numpy as np | |
from pymoo.core.problem import ElementwiseProblem | |
from pymoo.algorithms.moo.nsga2 import NSGA2 | |
from pymoo.algorithms.moo.nsga3 import NSGA3 | |
from pymoo.optimize import minimize | |
from pymoo.util.ref_dirs import get_reference_directions | |
from pymoo.operators.sampling.rnd import FloatRandomSampling |
#%% | |
import random | |
import numpy as np | |
from pymoo.core.problem import ElementwiseProblem | |
from pymoo.algorithms.moo.nsga2 import NSGA2 | |
from pymoo.optimize import minimize | |
from pymoo.operators.sampling.rnd import FloatRandomSampling | |
from pymoo.operators.crossover.sbx import SBX | |
from pymoo.operators.mutation.pm import PM |