Created
February 5, 2014 20:41
-
-
Save shaunlebron/8832585 to your computer and use it in GitHub Desktop.
The best way to interpolate 2D angles
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
2D Angle Interpolation (shortest distance) | |
Parameters: | |
a0 = start angle | |
a1 = end angle | |
t = interpolation factor (0.0=start, 1.0=end) | |
Benefits: | |
1. Angles do NOT need to be normalized. | |
2. Implementation is portable, regardless of how the modulo "%" operator outputs sign (i.e. Python, Ruby, Javascript) | |
3. Very easy to remember. | |
Thanks to Trey Wilson for the closed-form solution for shortAngleDist! | |
*/ | |
function shortAngleDist(a0,a1) { | |
var max = Math.PI*2; | |
var da = (a1 - a0) % max; | |
return 2*da % max - da; | |
} | |
function angleLerp(a0,a1,t) { | |
return a0 + shortAngleDist(a0,a1)*t; | |
} |
It's important to note that %
has the same operator precedence as *
and /
in JavaScript, when porting this to other languages. Maybe that's conventional, but in languages where you have to use a function for modulo (for floats), such as Go or GLSL, you have to be mindful of it.
Here's a Golang version:
func shortAngleDist(from float64, to float64) float64 {
var turn = math.Pi * 2
var deltaAngle = math.Mod(to-from, turn)
return math.Mod(2*deltaAngle, turn) - deltaAngle
}
func angleLerp(from float64, to float64, fraction float64) float64 {
return from + shortAngleDist(from, to)*fraction
}
I prefer the @earlin code
https://gist.github.com/shaunlebron/8832585?permalink_comment_id=3227412#gistcomment-3227412
because when testing godotengine/godot#30564 (the C++ version)
- lerp_angle(-90.0_deg, 90.0_deg, 0.0) returns 90.0_deg
- lerp_angle(-90.0_deg, 90.0_deg, 0.5) returns -180.0_deg instead of 0.0_deg
- lerp_angle(-90.0_deg, 90.0_deg, 1.0) returns -270.0_deg instead of -90.0_deg
Which is not the case with earlin's code.
My quick implementation in C++ using https://github.com/nholthaus/units:
#include "units.h"
using namespace units::literals;
using Radian = units::angle::radian_t;
using Degree = units::angle::degree_t;
template<typename T, typename U>
inline T lerp(T const from, T const to, U const weight)
{
return from + (to - from) * weight;
}
template<typename T>
inline T constrain(T const value, T const lower, T const upper)
{
if (value < lower) { return lower; }
if (value > upper) { return upper; }
return value;
}
inline Degree lerp_angle(Degree const from, Degree const to, double weight)
{
auto repeat = [](Degree const t, Degree const m) -> Degree
{
return constrain(t - units::math::floor(t / m) * m, 0.0_deg, m);
};
const Degree dt = repeat(to - from, 360.0_deg);
return lerp(from, from + (dt > 180.0_deg ? dt - 360.0_deg : dt), weight);
}
@codergautam nice !
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
How is that better? I see a number of branches, less numerical stability/continuity (due to the clamp which presumably handles rounding errors from the divide)