Report ID: ab49fdfa2cf62ec133d6940711b5352308dc18334ffd5f255faee51ef905520c
Kurobako Version: 0.1.3
Number of Solvers: 4
Number of Problems: 4
Metrics Precedence: best value -> AUC -> elapsed time
Please refer to "A Strategy for Ranking Optimizers using Multiple Criteria" for the ranking strategy used in this report.
Overall Results
Individual Results
Solvers
Problems
Studies
ID: 5c2d0f6ef4e91f85ff31aadd7bf531744cb1ac80283ab4372fc8498540e479c5
recipe:
{
"name" : " Hyperband with TPE" ,
"command" : {
"path" : " python" ,
"args" : [
" hyperband-solver.py" ,
" --sampler" ,
" tpe"
]
}
}
specification:
{
"name" : " Hyperband with TPE" ,
"attrs" : {
"github" : " https://github.com/optuna/optuna" ,
"paper" : " Akiba, Takuya, et al. \" Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019." ,
"version" : " optuna=0.19.0, kurobako-py=0.1.1"
},
"capabilities" : [
" UNIFORM_CONTINUOUS" ,
" UNIFORM_DISCRETE" ,
" LOG_UNIFORM_CONTINUOUS" ,
" CATEGORICAL" ,
" CONDITIONAL" ,
" CONCURRENT"
]
}
ID: ff6afef357c6e481d59cf7c916f6d1d35763ac00803b2a0e838d5cb33b51f543
recipe:
{
"name" : " MedianPruner with TPE" ,
"optuna" : {}
}
specification:
{
"name" : " MedianPruner with TPE" ,
"attrs" : {
"github" : " https://github.com/optuna/optuna" ,
"paper" : " Akiba, Takuya, et al. \" Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019." ,
"version" : " optuna=0.19.0, kurobako-py=0.1.1"
},
"capabilities" : [
" UNIFORM_CONTINUOUS" ,
" UNIFORM_DISCRETE" ,
" LOG_UNIFORM_CONTINUOUS" ,
" CATEGORICAL" ,
" CONDITIONAL" ,
" CONCURRENT"
]
}
ID: 507a3f8cf732d538feba4e2cdd6cf17d2b9f90a256810849929a7215ab592672
recipe:
{
"name" : " SuccessiveHalving with TPE" ,
"optuna" : {
"pruner" : " asha"
}
}
specification:
{
"name" : " SuccessiveHalving with TPE" ,
"attrs" : {
"github" : " https://github.com/optuna/optuna" ,
"paper" : " Akiba, Takuya, et al. \" Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019." ,
"version" : " optuna=0.19.0, kurobako-py=0.1.1"
},
"capabilities" : [
" UNIFORM_CONTINUOUS" ,
" UNIFORM_DISCRETE" ,
" LOG_UNIFORM_CONTINUOUS" ,
" CATEGORICAL" ,
" CONDITIONAL" ,
" CONCURRENT"
]
}
ID: c704b8debecaeee2d9b06549c5e3db2815760072fff200244dea9764ec623ea8
recipe:
{
"name" : " TPE" ,
"optuna" : {
"pruner" : " nop"
}
}
specification:
{
"name" : " TPE" ,
"attrs" : {
"github" : " https://github.com/optuna/optuna" ,
"paper" : " Akiba, Takuya, et al. \" Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019." ,
"version" : " optuna=0.19.0, kurobako-py=0.1.1"
},
"capabilities" : [
" UNIFORM_CONTINUOUS" ,
" UNIFORM_DISCRETE" ,
" LOG_UNIFORM_CONTINUOUS" ,
" CATEGORICAL" ,
" CONDITIONAL" ,
" CONCURRENT"
]
}
ID: 880b007e3c61f4aecb7e9b0aa2f9be5fea9f491a076853f68f402769aa254034
recipe:
{
"hpobench" : {
"dataset" : " ./fcnet_naval_propulsion_data.hdf5"
}
}
specification:
{
"name" : " HPO-Bench-Naval" ,
"attrs" : {
"github" : " https://github.com/automl/nas_benchmarks" ,
"paper" : " Klein, Aaron, and Frank Hutter. \" Tabular Benchmarks for Joint Architecture and Hyperparameter Optimization.\" arXiv preprint arXiv:1905.04970 (2019)." ,
"version" : " kurobako_problems=0.1.3"
},
"params_domain" : [
{
"name" : " activation_fn_1" ,
"range" : {
"type" : " CATEGORICAL" ,
"choices" : [
" tanh" ,
" relu"
]
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " activation_fn_2" ,
"range" : {
"type" : " CATEGORICAL" ,
"choices" : [
" tanh" ,
" relu"
]
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " batch_size" ,
"range" : {
"type" : " DISCRETE" ,
"low" : 0 ,
"high" : 4
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " dropout_1" ,
"range" : {
"type" : " DISCRETE" ,
"low" : 0 ,
"high" : 3
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " dropout_2" ,
"range" : {
"type" : " DISCRETE" ,
"low" : 0 ,
"high" : 3
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " init_lr" ,
"range" : {
"type" : " DISCRETE" ,
"low" : 0 ,
"high" : 6
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " lr_schedule" ,
"range" : {
"type" : " CATEGORICAL" ,
"choices" : [
" cosine" ,
" const"
]
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " n_units_1" ,
"range" : {
"type" : " DISCRETE" ,
"low" : 0 ,
"high" : 6
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " n_units_2" ,
"range" : {
"type" : " DISCRETE" ,
"low" : 0 ,
"high" : 6
},
"distribution" : " UNIFORM" ,
"constraint" : null
}
],
"values_domain" : [
{
"name" : " Validation MSE" ,
"range" : {
"type" : " CONTINUOUS" ,
"low" : 0.0
},
"distribution" : " UNIFORM" ,
"constraint" : null
}
],
"steps" : 100
}
ID: 445bfa45fdbb8ec6ae6d4dba1909114f3948fa67b47209258db9291480b405b5
recipe:
{
"hpobench" : {
"dataset" : " ./fcnet_parkinsons_telemonitoring_data.hdf5"
}
}
specification:
{
"name" : " HPO-Bench-Parkinson" ,
"attrs" : {
"github" : " https://github.com/automl/nas_benchmarks" ,
"paper" : " Klein, Aaron, and Frank Hutter. \" Tabular Benchmarks for Joint Architecture and Hyperparameter Optimization.\" arXiv preprint arXiv:1905.04970 (2019)." ,
"version" : " kurobako_problems=0.1.3"
},
"params_domain" : [
{
"name" : " activation_fn_1" ,
"range" : {
"type" : " CATEGORICAL" ,
"choices" : [
" tanh" ,
" relu"
]
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " activation_fn_2" ,
"range" : {
"type" : " CATEGORICAL" ,
"choices" : [
" tanh" ,
" relu"
]
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " batch_size" ,
"range" : {
"type" : " DISCRETE" ,
"low" : 0 ,
"high" : 4
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " dropout_1" ,
"range" : {
"type" : " DISCRETE" ,
"low" : 0 ,
"high" : 3
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " dropout_2" ,
"range" : {
"type" : " DISCRETE" ,
"low" : 0 ,
"high" : 3
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " init_lr" ,
"range" : {
"type" : " DISCRETE" ,
"low" : 0 ,
"high" : 6
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " lr_schedule" ,
"range" : {
"type" : " CATEGORICAL" ,
"choices" : [
" cosine" ,
" const"
]
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " n_units_1" ,
"range" : {
"type" : " DISCRETE" ,
"low" : 0 ,
"high" : 6
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " n_units_2" ,
"range" : {
"type" : " DISCRETE" ,
"low" : 0 ,
"high" : 6
},
"distribution" : " UNIFORM" ,
"constraint" : null
}
],
"values_domain" : [
{
"name" : " Validation MSE" ,
"range" : {
"type" : " CONTINUOUS" ,
"low" : 0.0
},
"distribution" : " UNIFORM" ,
"constraint" : null
}
],
"steps" : 100
}
ID: add73d4788d7900b34988a8b91cde43e820cac99f9e354e1e71b0ea0be3ef4a6
recipe:
{
"hpobench" : {
"dataset" : " ./fcnet_protein_structure_data.hdf5"
}
}
specification:
{
"name" : " HPO-Bench-Protein" ,
"attrs" : {
"github" : " https://github.com/automl/nas_benchmarks" ,
"paper" : " Klein, Aaron, and Frank Hutter. \" Tabular Benchmarks for Joint Architecture and Hyperparameter Optimization.\" arXiv preprint arXiv:1905.04970 (2019)." ,
"version" : " kurobako_problems=0.1.3"
},
"params_domain" : [
{
"name" : " activation_fn_1" ,
"range" : {
"type" : " CATEGORICAL" ,
"choices" : [
" tanh" ,
" relu"
]
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " activation_fn_2" ,
"range" : {
"type" : " CATEGORICAL" ,
"choices" : [
" tanh" ,
" relu"
]
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " batch_size" ,
"range" : {
"type" : " DISCRETE" ,
"low" : 0 ,
"high" : 4
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " dropout_1" ,
"range" : {
"type" : " DISCRETE" ,
"low" : 0 ,
"high" : 3
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " dropout_2" ,
"range" : {
"type" : " DISCRETE" ,
"low" : 0 ,
"high" : 3
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " init_lr" ,
"range" : {
"type" : " DISCRETE" ,
"low" : 0 ,
"high" : 6
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " lr_schedule" ,
"range" : {
"type" : " CATEGORICAL" ,
"choices" : [
" cosine" ,
" const"
]
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " n_units_1" ,
"range" : {
"type" : " DISCRETE" ,
"low" : 0 ,
"high" : 6
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " n_units_2" ,
"range" : {
"type" : " DISCRETE" ,
"low" : 0 ,
"high" : 6
},
"distribution" : " UNIFORM" ,
"constraint" : null
}
],
"values_domain" : [
{
"name" : " Validation MSE" ,
"range" : {
"type" : " CONTINUOUS" ,
"low" : 0.0
},
"distribution" : " UNIFORM" ,
"constraint" : null
}
],
"steps" : 100
}
ID: d88e1704447639bde17f236f7af47f93274d1f02bc8ec66733146ff9cdf50196
recipe:
{
"hpobench" : {
"dataset" : " ./fcnet_slice_localization_data.hdf5"
}
}
specification:
{
"name" : " HPO-Bench-Slice" ,
"attrs" : {
"github" : " https://github.com/automl/nas_benchmarks" ,
"paper" : " Klein, Aaron, and Frank Hutter. \" Tabular Benchmarks for Joint Architecture and Hyperparameter Optimization.\" arXiv preprint arXiv:1905.04970 (2019)." ,
"version" : " kurobako_problems=0.1.3"
},
"params_domain" : [
{
"name" : " activation_fn_1" ,
"range" : {
"type" : " CATEGORICAL" ,
"choices" : [
" tanh" ,
" relu"
]
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " activation_fn_2" ,
"range" : {
"type" : " CATEGORICAL" ,
"choices" : [
" tanh" ,
" relu"
]
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " batch_size" ,
"range" : {
"type" : " DISCRETE" ,
"low" : 0 ,
"high" : 4
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " dropout_1" ,
"range" : {
"type" : " DISCRETE" ,
"low" : 0 ,
"high" : 3
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " dropout_2" ,
"range" : {
"type" : " DISCRETE" ,
"low" : 0 ,
"high" : 3
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " init_lr" ,
"range" : {
"type" : " DISCRETE" ,
"low" : 0 ,
"high" : 6
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " lr_schedule" ,
"range" : {
"type" : " CATEGORICAL" ,
"choices" : [
" cosine" ,
" const"
]
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " n_units_1" ,
"range" : {
"type" : " DISCRETE" ,
"low" : 0 ,
"high" : 6
},
"distribution" : " UNIFORM" ,
"constraint" : null
},
{
"name" : " n_units_2" ,
"range" : {
"type" : " DISCRETE" ,
"low" : 0 ,
"high" : 6
},
"distribution" : " UNIFORM" ,
"constraint" : null
}
],
"values_domain" : [
{
"name" : " Validation MSE" ,
"range" : {
"type" : " CONTINUOUS" ,
"low" : 0.0
},
"distribution" : " UNIFORM" ,
"constraint" : null
}
],
"steps" : 100
}
ID: 99860593ae06d98cf295ae859fed896461aefc9aadf0e4e532734cca3ccc7d39
ID: e98f05609720b2dde1dadc14cc68fdf13eb4eae792baa8126061f226fcc06cd1
ID: 4e1157e85ba9e6252a1c17b080e7b6fcb2f9be329bd90f492dc91b16f0658f0b
ID: 0e4f067355d41d5416a24258f28a8d7b2cb946b25172013a233c3714146894df
ID: 186d7ff94b4bc8556b0a7c7f81384e126fc4ca106c46ce4638d0527af021c075
ID: efe00cb2acfeedfb75cdac284be3323c5844d3f48b89344ce10f718e9defe4f2
ID: 54cdfcebc95fc90e4af65cc5db05e49a301d00ccc92c3cf630c38e57d69ba83a
ID: 90c6cba83a1919cc970237a59711a8de95c2b7f65253953dbbcb421db0de2853
ID: b237d54e88f15501437112aaaeeb4f1a07f616744d677c3cc0bb2d8c0422eac8
ID: 3e41ea145df955d6378bd4dcf70ef49ac2af94bb217805a5958d8de60df6ec70
ID: 3c878cf37c14f9688166cf33a80d9085c8c15f826d79834217f87062b126de4b
ID: f9ff929d4971e789dec2c24c8a30bf879008d496355a89f6ba50379baa9b9dfe
ID: d2436e4a02f2ea4ec10cb37ddadb42a081d8357100ea76eac1f8ac3d806c52a1
ID: 01aab167501c209e547ede677a748b8ae2ecb330530c2285ed26d62c1028c92f
ID: c916abbe637a0bb2ab89ebff381c9d5982e92b58f71b4a5f16ff97f5644dfb30
ID: 23de9dbcae124d4edd76fcd63c64141c13959605853881f647928668cbb07af1