starzを使って集計:
前回: 2019/04/10
$ starz sile
Total: 2087
jsone ★ 250
starzを使って集計:
前回: 2019/04/10
$ starz sile
Total: 2087
jsone ★ 250
train.batch_size = 10 | |
train.learning_rate = 0.1 |
# A solver implementation based on Random Search algorithm. | |
from kurobako import problem | |
from kurobako import solver | |
import numpy as np | |
class RandomSolverFactory(solver.SolverFactory): | |
def specification(self): | |
return solver.SolverSpec(name='Random Search') | |
def create_solver(self, seed, problem): |
# A solver implementation based on Simulated Annealing algorithm. | |
from kurobako import solver | |
from kurobako.solver.optuna import OptunaSolverFactory | |
import optuna | |
class SimulatedAnnealingSampler(optuna.BaseSampler): | |
# Please refer to | |
# https://github.com/optuna/optuna/blob/v1.0.0/examples/samplers/simulated_annealing_sampler.py | |
# for the implementation. | |
... |
$ kurobako solver command python random.py > solvers.json | |
$ kurobako solver command python sa.py >> solvers.json | |
$ kurobako studies --problems $(cat problems.json) --solvers $(cat solvers.json) | kurobako run > result.json |
best value -> AUC
Please refer to ["A Strategy for Ranking Optimizers using Multiple Criteria"][Dewancker, Ian, et al., 2016] for the ranking strategy used in this report.
# 1. Download kurobako binary. | |
$ curl -L https://github.com/sile/kurobako/releases/download/0.2.6/kurobako-0.2.6.linux-amd64 -o kurobako | |
$ chmod +x kurobako && sudo mv kurobako /usr/local/bin/ | |
# 2. Download the data file for HPOBench (note that the file size is about 700MB). | |
$ curl -OL http://ml4aad.org/wp-content/uploads/2019/01/fcnet_tabular_benchmarks.tar.gz | |
$ tar xf fcnet_tabular_benchmarks.tar.gz && cd fcnet_tabular_benchmarks/ | |
# 3. Specify problems used in this benchmark. | |
# |
best value -> AUC
Please refer to ["A Strategy for Ranking Optimizers using Multiple Criteria"][Dewancker, Ian, et al., 2016] for the ranking strategy used in this report.
The aim of this benchmark is to compare the performances of Optuna's pruners (i.e., NopPruner
, MedianPruner
, SuccessiveHalvingPruner
and the ongoing HyperbandPruner
). All of the pruners were used by the default settings in this benchmark.
The commands to execute this benchmark.
// (1) Downloads `kurobako` (BBO benchmark tool) binary.
$ curl -L https://github.com/sile/kurobako/releases/download/0.1.3/kurobako-0.1.3.linux-amd64 -o kurobako
$ chmod +x kurobako && sudo mv kurobako /usr/local/bin/
// (2) Downloads data files of HPOBench. (notice that the total size is over 700MB)
$ curl -OL http://ml4aad.org/wp-content/uploads/2019/01/fcnet_tabular_benchmarks.tar.gz
$ cargo install kurobako
// or (only linux)
$ wget https://github.com/sile/kurobako/releases/download/0.0.15/kurobako-0.0.15.linux-amd64 -o kurobako && chmod +x kurobako
// or
$ git clone git://github.com/sile/kurobako.git && cd kurobako && git checkout 0.0.14 && cargo install --path .
// 独自サンプラの場合
$ kurobako benchmark --problems (kurobako problem-suite sigopt auc) --solvers (kurobako solver command -- python3 /tmp/optuna_solver_example.py ) --budget 100 --iterations 10 | kurobako run > /tmp/sigopt-my-sampler.json