- Report ID: 4ba0c3ff34e08ddaac04387c13628701e21fd683a713b496b3f78c3d541beac9
- Kurobako Version: 0.1.3
- Number of Solvers: 3
- Number of Problems: 4
- Metrics Precedence:
best value -> AUC
Please refer to "A Strategy for Ranking Optimizers using Multiple Criteria" for the ranking strategy used in this report.
Solver | Borda | Firsts |
---|---|---|
Hyperband (n_brackets=3) | 1 | 4 |
Hyperband (n_brackets=4) | 1 | 4 |
Hyperband (n_brackets=5) | 0 | 3 |
(1) Problem: HPO-Bench-Parkinson
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Hyperband (n_brackets=4) (study) | 0.010274 +- 0.002866 | 0.593 +- 0.168 | 77.627 +- 4.032 |
1 | Hyperband (n_brackets=3) (study) | 0.010998 +- 0.004389 | 0.610 +- 0.216 | 78.957 +- 4.106 |
1 | Hyperband (n_brackets=5) (study) | 0.010452 +- 0.003867 | 0.683 +- 0.214 | 76.188 +- 3.679 |
(2) Problem: HPO-Bench-Naval
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Hyperband (n_brackets=4) (study) | 0.000088 +- 0.000083 | 0.015 +- 0.016 | 78.439 +- 3.745 |
1 | Hyperband (n_brackets=3) (study) | 0.000113 +- 0.000151 | 0.023 +- 0.034 | 81.952 +- 5.304 |
1 | Hyperband (n_brackets=5) (study) | 0.000095 +- 0.000095 | 0.023 +- 0.026 | 76.634 +- 3.675 |
(3) Problem: HPO-Bench-Protein
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Hyperband (n_brackets=4) (study) | 0.229968 +- 0.008488 | 10.355 +- 0.517 | 77.086 +- 4.335 |
1 | Hyperband (n_brackets=3) (study) | 0.229168 +- 0.006514 | 10.320 +- 0.377 | 78.119 +- 4.569 |
3 | Hyperband (n_brackets=5) (study) | 0.235814 +- 0.011201 | 10.631 +- 0.555 | 75.984 +- 3.760 |
(4) Problem: HPO-Bench-Slice
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Hyperband (n_brackets=4) (study) | 0.000360 +- 0.000145 | 0.021 +- 0.008 | 77.230 +- 5.050 |
1 | Hyperband (n_brackets=3) (study) | 0.000315 +- 0.000083 | 0.018 +- 0.006 | 79.189 +- 5.027 |
1 | Hyperband (n_brackets=5) (study) | 0.000310 +- 0.000119 | 0.022 +- 0.011 | 75.585 +- 5.596 |
recipe:
{
"name": "Hyperband (n_brackets=3)",
"command": {
"path": "python",
"args": [
"hyperband-solver.py",
"--n-brackets",
"3"
]
}
}
specification:
{
"name": "Hyperband (n_brackets=3)",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=0.19.0, kurobako-py=0.1.1"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
}
recipe:
{
"name": "Hyperband (n_brackets=4)",
"command": {
"path": "python",
"args": [
"hyperband-solver.py",
"--n-brackets",
"4"
]
}
}
specification:
{
"name": "Hyperband (n_brackets=4)",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=0.19.0, kurobako-py=0.1.1"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
}
recipe:
{
"name": "Hyperband (n_brackets=5)",
"command": {
"path": "python",
"args": [
"hyperband-solver.py",
"--n-brackets",
"5"
]
}
}
specification:
{
"name": "Hyperband (n_brackets=5)",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=0.19.0, kurobako-py=0.1.1"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
}
recipe:
{
"hpobench": {
"dataset": "./fcnet_naval_propulsion_data.hdf5"
}
}
specification:
{
"name": "HPO-Bench-Naval",
"attrs": {
"github": "https://github.com/automl/nas_benchmarks",
"paper": "Klein, Aaron, and Frank Hutter. \"Tabular Benchmarks for Joint Architecture and Hyperparameter Optimization.\" arXiv preprint arXiv:1905.04970 (2019).",
"version": "kurobako_problems=0.1.3"
},
"params_domain": [
{
"name": "activation_fn_1",
"range": {
"type": "CATEGORICAL",
"choices": [
"tanh",
"relu"
]
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "activation_fn_2",
"range": {
"type": "CATEGORICAL",
"choices": [
"tanh",
"relu"
]
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "batch_size",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 4
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "dropout_1",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 3
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "dropout_2",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 3
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "init_lr",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 6
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "lr_schedule",
"range": {
"type": "CATEGORICAL",
"choices": [
"cosine",
"const"
]
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "n_units_1",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 6
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "n_units_2",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 6
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Validation MSE",
"range": {
"type": "CONTINUOUS",
"low": 0.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 100
}
recipe:
{
"hpobench": {
"dataset": "./fcnet_parkinsons_telemonitoring_data.hdf5"
}
}
specification:
{
"name": "HPO-Bench-Parkinson",
"attrs": {
"github": "https://github.com/automl/nas_benchmarks",
"paper": "Klein, Aaron, and Frank Hutter. \"Tabular Benchmarks for Joint Architecture and Hyperparameter Optimization.\" arXiv preprint arXiv:1905.04970 (2019).",
"version": "kurobako_problems=0.1.3"
},
"params_domain": [
{
"name": "activation_fn_1",
"range": {
"type": "CATEGORICAL",
"choices": [
"tanh",
"relu"
]
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "activation_fn_2",
"range": {
"type": "CATEGORICAL",
"choices": [
"tanh",
"relu"
]
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "batch_size",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 4
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "dropout_1",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 3
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "dropout_2",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 3
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "init_lr",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 6
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "lr_schedule",
"range": {
"type": "CATEGORICAL",
"choices": [
"cosine",
"const"
]
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "n_units_1",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 6
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "n_units_2",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 6
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Validation MSE",
"range": {
"type": "CONTINUOUS",
"low": 0.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 100
}
recipe:
{
"hpobench": {
"dataset": "./fcnet_protein_structure_data.hdf5"
}
}
specification:
{
"name": "HPO-Bench-Protein",
"attrs": {
"github": "https://github.com/automl/nas_benchmarks",
"paper": "Klein, Aaron, and Frank Hutter. \"Tabular Benchmarks for Joint Architecture and Hyperparameter Optimization.\" arXiv preprint arXiv:1905.04970 (2019).",
"version": "kurobako_problems=0.1.3"
},
"params_domain": [
{
"name": "activation_fn_1",
"range": {
"type": "CATEGORICAL",
"choices": [
"tanh",
"relu"
]
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "activation_fn_2",
"range": {
"type": "CATEGORICAL",
"choices": [
"tanh",
"relu"
]
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "batch_size",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 4
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "dropout_1",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 3
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "dropout_2",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 3
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "init_lr",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 6
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "lr_schedule",
"range": {
"type": "CATEGORICAL",
"choices": [
"cosine",
"const"
]
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "n_units_1",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 6
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "n_units_2",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 6
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Validation MSE",
"range": {
"type": "CONTINUOUS",
"low": 0.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 100
}
recipe:
{
"hpobench": {
"dataset": "./fcnet_slice_localization_data.hdf5"
}
}
specification:
{
"name": "HPO-Bench-Slice",
"attrs": {
"github": "https://github.com/automl/nas_benchmarks",
"paper": "Klein, Aaron, and Frank Hutter. \"Tabular Benchmarks for Joint Architecture and Hyperparameter Optimization.\" arXiv preprint arXiv:1905.04970 (2019).",
"version": "kurobako_problems=0.1.3"
},
"params_domain": [
{
"name": "activation_fn_1",
"range": {
"type": "CATEGORICAL",
"choices": [
"tanh",
"relu"
]
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "activation_fn_2",
"range": {
"type": "CATEGORICAL",
"choices": [
"tanh",
"relu"
]
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "batch_size",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 4
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "dropout_1",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 3
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "dropout_2",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 3
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "init_lr",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 6
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "lr_schedule",
"range": {
"type": "CATEGORICAL",
"choices": [
"cosine",
"const"
]
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "n_units_1",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 6
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "n_units_2",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 6
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Validation MSE",
"range": {
"type": "CONTINUOUS",
"low": 0.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 100
}
- problem: HPO-Bench-Naval
- solver: Hyperband (n_brackets=3)
- budget: 50
- repeats: 30
- concurrency: 1
- problem: HPO-Bench-Naval
- solver: Hyperband (n_brackets=4)
- budget: 50
- repeats: 30
- concurrency: 1
- problem: HPO-Bench-Naval
- solver: Hyperband (n_brackets=5)
- budget: 50
- repeats: 30
- concurrency: 1
- problem: HPO-Bench-Parkinson
- solver: Hyperband (n_brackets=3)
- budget: 50
- repeats: 30
- concurrency: 1
- problem: HPO-Bench-Parkinson
- solver: Hyperband (n_brackets=4)
- budget: 50
- repeats: 29
- concurrency: 1
- problem: HPO-Bench-Parkinson
- solver: Hyperband (n_brackets=5)
- budget: 50
- repeats: 30
- concurrency: 1
- problem: HPO-Bench-Protein
- solver: Hyperband (n_brackets=3)
- budget: 50
- repeats: 30
- concurrency: 1
- problem: HPO-Bench-Protein
- solver: Hyperband (n_brackets=4)
- budget: 50
- repeats: 30
- concurrency: 1
- problem: HPO-Bench-Protein
- solver: Hyperband (n_brackets=5)
- budget: 50
- repeats: 30
- concurrency: 1
- problem: HPO-Bench-Slice
- solver: Hyperband (n_brackets=3)
- budget: 50
- repeats: 30
- concurrency: 1
- problem: HPO-Bench-Slice
- solver: Hyperband (n_brackets=4)
- budget: 50
- repeats: 30
- concurrency: 1
- problem: HPO-Bench-Slice
- solver: Hyperband (n_brackets=5)
- budget: 50
- repeats: 30
- concurrency: 1